Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching Graphene Nanoelectronics for a Post-Silicon World

11.11.2011
Rensselaer Polytechnic Institute Researchers Use Supercomputer To Study Effects of Stacking Graphene Nanoribbons

Copper’s days are numbered, and a new study at Rensselaer Polytechnic Institute could hasten the downfall of the ubiquitous metal in smart phones, tablet computers, and nearly all electronics. This is good news for technophiles who are seeking smaller, faster devices.


ACS Nano
Rensselaer/Nayak
A new study from researchers at Rensselaer Polytechnic Institute details how stacking nanoribbons of graphene can boost the material’s ability to transmit electrical charges. The discovery further supports the idea that graphene could one day replace traditional copper as the best material for interconnects that transmit data and power around computer chips.

As new generations of computer chips continue to shrink in size, so do the copper pathways that transport electricity and information around the labyrinth of transistors and components. When these pathways—called interconnects—grow smaller, they become less efficient, consume more power, and are more prone to permanent failure.

To overcome this hurdle, industry and academia are vigorously researching new candidates to succeed traditional copper as the material of choice for interconnects on computer chips. One promising candidate is graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chicken-wire fence. Prized by researchers for its unique properties, graphene is essentially a single layer of the graphite found commonly in our pencils or the charcoal we burn on our barbeques.

Led by Rensselaer Professor Saroj Nayak, a team of researchers discovered they could enhance the ability of graphene to transmit electricity by stacking several thin graphene ribbons on top of one another. The study, published in the journal ACS Nano, brings industry closer to realizing graphene nanoelectronics and naming graphene as the heir apparent to copper.

“Graphene shows enormous potential for use in interconnects, and stacking up graphene shows a viable way to mass produce these structures,” said Nayak, a professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer. “Cooper’s limitations are apparent, as increasingly smaller copper interconnects suffer from sluggish electron flows that results in hotter, less reliable devices. Our new study makes a case for the possibility that stacks of graphene ribbons could have what it takes to be used as interconnects in integrated circuits.”

The study, based on large-scale quantum simulations, was conducted using the Rensselaer Computational Center for Nanotechnology Innovations (CCNI), one of the world’s most powerful university-based supercomputers.

Copper interconnects suffer from a variety of unwanted problems, which grow more prominent as the size of the interconnects shrink. Electrons travel through the copper nanowires sluggishly and generate intense heat. As a result, the electrons “drag” atoms of copper around with them. These misplaced atoms increase the copper wire’s electrical resistance, and degrade the wire’s ability to transport electrons. This means fewer electrons are able to pass through the copper successfully, and any lingering electrons are expressed as heat. This heat can have negative effects on both a computer chip’s speed and performance.

It is generally accepted that a quality replacement for traditional copper must be discovered and perfected in the next five to 10 years in order to further perpetuate Moore’s Law—an industry mantra that states the number of transistors on a computer chip, and thus the chip’s speed, should double every 18 to 24 months.

Nayak’s recent work, published in the journal ACS Nano, is titled “Effect of Layer Stacking on the Electronic Structure of Graphene Nanoribbons.” When cut into nanoribbons, graphene is known to exhibit a band gap—an energy gap between the valence and conduction bands—which is an unattractive property for interconnects. The new study shows that stacking the graphene nanoribbons on top of each other, however, could significantly shrink this band gap. The study may be viewed online at: http://dx.doi.org/10.1021/nn200941u

“The optimal thickness is a stack of four to six layers of graphene,” said Neerav Kharche, first author of the study and a computational scientist at CCNI. “Stacking more layers beyond this thickness doesn’t reduce the band gap any further.”

The end destination, Nayak said, is to one day manufacture microprocessors—both the interconnects and the transistors—entirely out of graphene. This game-changing goal, called monolithic integration, would mean the end of the long era of copper interconnects and silicon transistors.

“Such an advance is likely still many years into the future, but it will certainly revolutionize the way nearly all computers and electronics are designed and manufactured,” Nayak said.

Along with Nayak and Kharche, contributors to this study were: former Rensselaer physics graduate student Yu Zhou; Swastik Kar, former Rensselaer physics research assistant professor; and Kevin P. O’Brien of Intel Corporation.

This research was supported in part by the New York State Interconnect Focus Center at Rensselaer; the Semiconductor Research Corporation; and the National Science Foundation (NSF) Division of Electrical, Communications, and Cyber Systems, and a generous gift from a donor who wished to remain anonymous. Computational resources were partly funded by Rensselaer and New York state through CCNI; and by NSF through nanoHUB.org.

For more information on Nayak’s graphene research at Rensselaer, visit:

• Light-Speed Nanotech: Controlling the Nature of Graphene
http://news.rpi.edu/update.do?artcenterkey=2528
• New Hybrid Nanostructures Detect Nanoscale Magnetism
http://news.rpi.edu/update.do?artcenterkey=2520
• Carbon Nanotubes Outperform Copper Nanowires as Interconnects
http://news.rpi.edu/update.do?artcenterkey=2412
• Graphene Nanoelectronics: Making Tomorrow’s Computers from a Pencil Trace
http://news.rpi.edu/update.do?artcenterkey=2253
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>