Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching Graphene Nanoelectronics for a Post-Silicon World

11.11.2011
Rensselaer Polytechnic Institute Researchers Use Supercomputer To Study Effects of Stacking Graphene Nanoribbons

Copper’s days are numbered, and a new study at Rensselaer Polytechnic Institute could hasten the downfall of the ubiquitous metal in smart phones, tablet computers, and nearly all electronics. This is good news for technophiles who are seeking smaller, faster devices.


ACS Nano
Rensselaer/Nayak
A new study from researchers at Rensselaer Polytechnic Institute details how stacking nanoribbons of graphene can boost the material’s ability to transmit electrical charges. The discovery further supports the idea that graphene could one day replace traditional copper as the best material for interconnects that transmit data and power around computer chips.

As new generations of computer chips continue to shrink in size, so do the copper pathways that transport electricity and information around the labyrinth of transistors and components. When these pathways—called interconnects—grow smaller, they become less efficient, consume more power, and are more prone to permanent failure.

To overcome this hurdle, industry and academia are vigorously researching new candidates to succeed traditional copper as the material of choice for interconnects on computer chips. One promising candidate is graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chicken-wire fence. Prized by researchers for its unique properties, graphene is essentially a single layer of the graphite found commonly in our pencils or the charcoal we burn on our barbeques.

Led by Rensselaer Professor Saroj Nayak, a team of researchers discovered they could enhance the ability of graphene to transmit electricity by stacking several thin graphene ribbons on top of one another. The study, published in the journal ACS Nano, brings industry closer to realizing graphene nanoelectronics and naming graphene as the heir apparent to copper.

“Graphene shows enormous potential for use in interconnects, and stacking up graphene shows a viable way to mass produce these structures,” said Nayak, a professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer. “Cooper’s limitations are apparent, as increasingly smaller copper interconnects suffer from sluggish electron flows that results in hotter, less reliable devices. Our new study makes a case for the possibility that stacks of graphene ribbons could have what it takes to be used as interconnects in integrated circuits.”

The study, based on large-scale quantum simulations, was conducted using the Rensselaer Computational Center for Nanotechnology Innovations (CCNI), one of the world’s most powerful university-based supercomputers.

Copper interconnects suffer from a variety of unwanted problems, which grow more prominent as the size of the interconnects shrink. Electrons travel through the copper nanowires sluggishly and generate intense heat. As a result, the electrons “drag” atoms of copper around with them. These misplaced atoms increase the copper wire’s electrical resistance, and degrade the wire’s ability to transport electrons. This means fewer electrons are able to pass through the copper successfully, and any lingering electrons are expressed as heat. This heat can have negative effects on both a computer chip’s speed and performance.

It is generally accepted that a quality replacement for traditional copper must be discovered and perfected in the next five to 10 years in order to further perpetuate Moore’s Law—an industry mantra that states the number of transistors on a computer chip, and thus the chip’s speed, should double every 18 to 24 months.

Nayak’s recent work, published in the journal ACS Nano, is titled “Effect of Layer Stacking on the Electronic Structure of Graphene Nanoribbons.” When cut into nanoribbons, graphene is known to exhibit a band gap—an energy gap between the valence and conduction bands—which is an unattractive property for interconnects. The new study shows that stacking the graphene nanoribbons on top of each other, however, could significantly shrink this band gap. The study may be viewed online at: http://dx.doi.org/10.1021/nn200941u

“The optimal thickness is a stack of four to six layers of graphene,” said Neerav Kharche, first author of the study and a computational scientist at CCNI. “Stacking more layers beyond this thickness doesn’t reduce the band gap any further.”

The end destination, Nayak said, is to one day manufacture microprocessors—both the interconnects and the transistors—entirely out of graphene. This game-changing goal, called monolithic integration, would mean the end of the long era of copper interconnects and silicon transistors.

“Such an advance is likely still many years into the future, but it will certainly revolutionize the way nearly all computers and electronics are designed and manufactured,” Nayak said.

Along with Nayak and Kharche, contributors to this study were: former Rensselaer physics graduate student Yu Zhou; Swastik Kar, former Rensselaer physics research assistant professor; and Kevin P. O’Brien of Intel Corporation.

This research was supported in part by the New York State Interconnect Focus Center at Rensselaer; the Semiconductor Research Corporation; and the National Science Foundation (NSF) Division of Electrical, Communications, and Cyber Systems, and a generous gift from a donor who wished to remain anonymous. Computational resources were partly funded by Rensselaer and New York state through CCNI; and by NSF through nanoHUB.org.

For more information on Nayak’s graphene research at Rensselaer, visit:

• Light-Speed Nanotech: Controlling the Nature of Graphene
http://news.rpi.edu/update.do?artcenterkey=2528
• New Hybrid Nanostructures Detect Nanoscale Magnetism
http://news.rpi.edu/update.do?artcenterkey=2520
• Carbon Nanotubes Outperform Copper Nanowires as Interconnects
http://news.rpi.edu/update.do?artcenterkey=2412
• Graphene Nanoelectronics: Making Tomorrow’s Computers from a Pencil Trace
http://news.rpi.edu/update.do?artcenterkey=2253
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>