Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from the University of Zurich discover new particle at CERN

27.04.2012
Physicists from the University of Zurich have discovered a previously unknown particle composed of three quarks in the Large Hadron Collider (LHC) particle accelerator. A new baryon could thus be detected for the first time at the LHC. The baryon known as Xi_b^* confirms fundamental assumptions of physics regarding the binding of quarks.

In particle physics, the baryon family refers to particles that are made up of three quarks. Quarks form a group of six particles that differ in their masses and charges. The two lightest quarks, the so-called “up” and “down” quarks, form the two atomic components, protons and neutrons.

All baryons that are composed of the three lightest quarks (“up”, “down” and “strange” quarks) are known. Only very few baryons with heavy quarks have been observed to date. They can only be generated artificially in particle accelerators as they are heavy and very unstable.

In the course of proton collisions in the LHC at CERN, physicists Claude Amsler, Vincenzo Chiochia and Ernest Aguiló from the University of Zurich’s Physics Institute managed to detect a baryon with one light and two heavy quarks. The particle Xi_b^* comprises one “up”, one “strange” and one “bottom” quark (usb), is electrically neutral and has a spin of 3/2 (1.5). Its mass is comparable to that of a lithium atom. The new discovery means that two of the three baryons predicted in the usb composition by theory have now been observed.

The discovery was based on data gathered in the CMS detector, which the University of Zurich was involved in developing. The new particle cannot be detected directly as it is too unstable to be registered by the detector. However, Xi_b^* breaks up in a known cascade of decay products. Ernest Aguiló, a postdoctoral student from Professor Amsler’s group, identified traces of the respective decay products in the measurement data and was able to reconstruct the decay cascades starting from Xi_b^* decays.

The calculations are based on data from proton-proton collisions at an energy of seven Tera electron volts (TeV) collected by the CMS detector between April and November 2011. A total of 21 Xi_b^* baryon decays were discovered – statistically sufficient to rule out a statistical fluctuation.

The discovery of the new particle confirms the theory of how quarks bind and therefore helps to understand the strong interaction, one of the four basic forces of physics which determines the structure of matter.

UZH and the LHC

The University of Zurich is involved in the LHC at CERN with three research groups. Professor Amsler’s and Professor Chiochia’s groups are working on the CMS experiment; Professor Straumann’s group is involved in the LHCb experiment.

CMS detector

The CMS detector is designed to measure the energy and momentum of photons, electrons, muons and other charged particles with a high degree of accuracy. Various measuring instruments are arranged in layers in the 12,500-ton detector, with which traces of the particles resulting from the collisions can be recorded. 179 institutions worldwide were involved in developing CMS. In Switzerland, these are the University of Zurich, ETH Zurich and the Paul Scherrer Institute.

Contacts

Prof. Claude Amsler
Physik-Institut
University of Zurich
Tel.: +41 22 767 29 14
E-Mail: claude.amsler@cern.ch
Website: http://www.mnf.uzh.ch/index.php?id=500

Prof. Vincenzo Chiochia
Physik-Institut
University of Zurich
Tel.: +41 22 767 60 41
E-Mail: vincenzo.chiochia@cern.ch
Website: http://unizh.web.cern.ch/unizh/People/Vincenzo_Chiochia.htm

Beat Müller | Universität Zürich
Further information:
http://www.mnf.uzh.ch/index.php?id=500
http://unizh.web.cern.ch/unizh/People/Vincenzo_Chiochia.htm

Further reports about: CERN CMS LHC Xi_b^* atomic components lightest quarks neutrons proton collisions protons

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>