Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from the University of Zurich discover new particle at CERN

27.04.2012
Physicists from the University of Zurich have discovered a previously unknown particle composed of three quarks in the Large Hadron Collider (LHC) particle accelerator. A new baryon could thus be detected for the first time at the LHC. The baryon known as Xi_b^* confirms fundamental assumptions of physics regarding the binding of quarks.

In particle physics, the baryon family refers to particles that are made up of three quarks. Quarks form a group of six particles that differ in their masses and charges. The two lightest quarks, the so-called “up” and “down” quarks, form the two atomic components, protons and neutrons.

All baryons that are composed of the three lightest quarks (“up”, “down” and “strange” quarks) are known. Only very few baryons with heavy quarks have been observed to date. They can only be generated artificially in particle accelerators as they are heavy and very unstable.

In the course of proton collisions in the LHC at CERN, physicists Claude Amsler, Vincenzo Chiochia and Ernest Aguiló from the University of Zurich’s Physics Institute managed to detect a baryon with one light and two heavy quarks. The particle Xi_b^* comprises one “up”, one “strange” and one “bottom” quark (usb), is electrically neutral and has a spin of 3/2 (1.5). Its mass is comparable to that of a lithium atom. The new discovery means that two of the three baryons predicted in the usb composition by theory have now been observed.

The discovery was based on data gathered in the CMS detector, which the University of Zurich was involved in developing. The new particle cannot be detected directly as it is too unstable to be registered by the detector. However, Xi_b^* breaks up in a known cascade of decay products. Ernest Aguiló, a postdoctoral student from Professor Amsler’s group, identified traces of the respective decay products in the measurement data and was able to reconstruct the decay cascades starting from Xi_b^* decays.

The calculations are based on data from proton-proton collisions at an energy of seven Tera electron volts (TeV) collected by the CMS detector between April and November 2011. A total of 21 Xi_b^* baryon decays were discovered – statistically sufficient to rule out a statistical fluctuation.

The discovery of the new particle confirms the theory of how quarks bind and therefore helps to understand the strong interaction, one of the four basic forces of physics which determines the structure of matter.

UZH and the LHC

The University of Zurich is involved in the LHC at CERN with three research groups. Professor Amsler’s and Professor Chiochia’s groups are working on the CMS experiment; Professor Straumann’s group is involved in the LHCb experiment.

CMS detector

The CMS detector is designed to measure the energy and momentum of photons, electrons, muons and other charged particles with a high degree of accuracy. Various measuring instruments are arranged in layers in the 12,500-ton detector, with which traces of the particles resulting from the collisions can be recorded. 179 institutions worldwide were involved in developing CMS. In Switzerland, these are the University of Zurich, ETH Zurich and the Paul Scherrer Institute.

Contacts

Prof. Claude Amsler
Physik-Institut
University of Zurich
Tel.: +41 22 767 29 14
E-Mail: claude.amsler@cern.ch
Website: http://www.mnf.uzh.ch/index.php?id=500

Prof. Vincenzo Chiochia
Physik-Institut
University of Zurich
Tel.: +41 22 767 60 41
E-Mail: vincenzo.chiochia@cern.ch
Website: http://unizh.web.cern.ch/unizh/People/Vincenzo_Chiochia.htm

Beat Müller | Universität Zürich
Further information:
http://www.mnf.uzh.ch/index.php?id=500
http://unizh.web.cern.ch/unizh/People/Vincenzo_Chiochia.htm

Further reports about: CERN CMS LHC Xi_b^* atomic components lightest quarks neutrons proton collisions protons

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>