Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Mars Phoenix Data for Salt, Water

15.07.2010
A University of Arkansas researcher has received funding from NASA to study data from the Mars Phoenix mission and develop a better understanding of how the soil on Mars interacts with the atmosphere, and whether these interactions ever produce liquid water.

Vincent Chevrier, a research professor in the Arkansas Center for Space and Planetary Sciences, will work with graduate student Jennifer Hanley to analyze data from the Phoenix mission, which originally determined the presence of perchlorates, compounds containing the ion ClO4-, on the planet’s surface. The data, which were taken over the course of about six months, include information on temperature, humidity, electrical conductivity, heat parameters and permittivity, which relates to a material’s ability to transmit an electric field.

These tens of thousands of measurements contain information on how the Martian soil interacts with the atmosphere. Chevrier will examine how the soil affects the stability of ice, the humidity and the formation of liquid brine solutions, which contain liquid water.

“Our group has shown that it is thermodynamically possible to have a stable liquid in the soil for a few hours a day under certain conditions,” Chevrier said. “The effect of the regolith, or soil, on the water cycle is poorly understood and the Phoenix data provide a unique insight into these processes.” Changes in some of the electrical data from Phoenix may indicate the presence of liquid water, but such changes may be extremely subtle, or even nonexistent.

“You need a continuous layer of fluid in order to detect changes in these parameters,” Chevrier said. “A drop of water won’t do it.”

In addition to examining the activity of water at the Mars Phoenix site, Chevrier and Hanley will examine the composition and nature of the salts in the soil at the site, including the perchlorates. Perchlorates attract water, which means that they may help control humidity in the soil and atmosphere, said Chevrier. The current meteorological models for Mars make use of constants to fit the data, and these models work well for predicting where a Mars explorer should land.

“However, these models are not good for understanding what is going on beyond the constants,” Chevrier said.

The researchers will look at how the soil interacts with the atmosphere by studying data on three processes. First, they will examine the exchange of water vapor between salts so they can find out how the salts affect the atmosphere. They also will look at the kinetics, or speed, of adsorption, where water molecules collect around grains in the soil. Third, they will examine the ice layer under the top layer of soil, looking for signs of sublimation, where the ice becomes gas and diffuses through the soil.

After studying the soil, they will focus on liquid water.

“If the salts can exchange, maybe they will form a brine solution,” Chevrier said. This will require a detailed examination of the data, as Chevrier’s previous study showed that liquid water might be stable for only two or three hours on a given day.

Next they will reinvestigate the chemical data to see if there might be chlorate, the ClO3- ion, present as well as perchlorate. The chemical data don’t completely add up – the number of cations, or ions of positive charge, found by Phoenix does not fit scientists’ current understanding of the chemical composition of the soil. Chevrier and his team believe the explanation may involve the presence of chlorates as well as perchlorate. These two molecules look similar to the instruments found on Phoenix and have about the same stability, but the presence of chlorates in addition to perchlorates might help scientists determine the composition of the original salt assemblage in the soil.

CONTACTS:
Vincent Chevrier, research professor
Arkansas Center for Space and Planetary Sciences
479-575-2183, vchevrie@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Arkansas Mars PHOENIX Planetary SALT Water Snake chemical data water molecule

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>