Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Mars Phoenix Data for Salt, Water

15.07.2010
A University of Arkansas researcher has received funding from NASA to study data from the Mars Phoenix mission and develop a better understanding of how the soil on Mars interacts with the atmosphere, and whether these interactions ever produce liquid water.

Vincent Chevrier, a research professor in the Arkansas Center for Space and Planetary Sciences, will work with graduate student Jennifer Hanley to analyze data from the Phoenix mission, which originally determined the presence of perchlorates, compounds containing the ion ClO4-, on the planet’s surface. The data, which were taken over the course of about six months, include information on temperature, humidity, electrical conductivity, heat parameters and permittivity, which relates to a material’s ability to transmit an electric field.

These tens of thousands of measurements contain information on how the Martian soil interacts with the atmosphere. Chevrier will examine how the soil affects the stability of ice, the humidity and the formation of liquid brine solutions, which contain liquid water.

“Our group has shown that it is thermodynamically possible to have a stable liquid in the soil for a few hours a day under certain conditions,” Chevrier said. “The effect of the regolith, or soil, on the water cycle is poorly understood and the Phoenix data provide a unique insight into these processes.” Changes in some of the electrical data from Phoenix may indicate the presence of liquid water, but such changes may be extremely subtle, or even nonexistent.

“You need a continuous layer of fluid in order to detect changes in these parameters,” Chevrier said. “A drop of water won’t do it.”

In addition to examining the activity of water at the Mars Phoenix site, Chevrier and Hanley will examine the composition and nature of the salts in the soil at the site, including the perchlorates. Perchlorates attract water, which means that they may help control humidity in the soil and atmosphere, said Chevrier. The current meteorological models for Mars make use of constants to fit the data, and these models work well for predicting where a Mars explorer should land.

“However, these models are not good for understanding what is going on beyond the constants,” Chevrier said.

The researchers will look at how the soil interacts with the atmosphere by studying data on three processes. First, they will examine the exchange of water vapor between salts so they can find out how the salts affect the atmosphere. They also will look at the kinetics, or speed, of adsorption, where water molecules collect around grains in the soil. Third, they will examine the ice layer under the top layer of soil, looking for signs of sublimation, where the ice becomes gas and diffuses through the soil.

After studying the soil, they will focus on liquid water.

“If the salts can exchange, maybe they will form a brine solution,” Chevrier said. This will require a detailed examination of the data, as Chevrier’s previous study showed that liquid water might be stable for only two or three hours on a given day.

Next they will reinvestigate the chemical data to see if there might be chlorate, the ClO3- ion, present as well as perchlorate. The chemical data don’t completely add up – the number of cations, or ions of positive charge, found by Phoenix does not fit scientists’ current understanding of the chemical composition of the soil. Chevrier and his team believe the explanation may involve the presence of chlorates as well as perchlorate. These two molecules look similar to the instruments found on Phoenix and have about the same stability, but the presence of chlorates in addition to perchlorates might help scientists determine the composition of the original salt assemblage in the soil.

CONTACTS:
Vincent Chevrier, research professor
Arkansas Center for Space and Planetary Sciences
479-575-2183, vchevrie@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Arkansas Mars PHOENIX Planetary SALT Water Snake chemical data water molecule

More articles from Physics and Astronomy:

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

nachricht Los Alamos researchers and supercomputers help interpret the latest LIGO findings
18.10.2017 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>