Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Mars Phoenix Data for Salt, Water

15.07.2010
A University of Arkansas researcher has received funding from NASA to study data from the Mars Phoenix mission and develop a better understanding of how the soil on Mars interacts with the atmosphere, and whether these interactions ever produce liquid water.

Vincent Chevrier, a research professor in the Arkansas Center for Space and Planetary Sciences, will work with graduate student Jennifer Hanley to analyze data from the Phoenix mission, which originally determined the presence of perchlorates, compounds containing the ion ClO4-, on the planet’s surface. The data, which were taken over the course of about six months, include information on temperature, humidity, electrical conductivity, heat parameters and permittivity, which relates to a material’s ability to transmit an electric field.

These tens of thousands of measurements contain information on how the Martian soil interacts with the atmosphere. Chevrier will examine how the soil affects the stability of ice, the humidity and the formation of liquid brine solutions, which contain liquid water.

“Our group has shown that it is thermodynamically possible to have a stable liquid in the soil for a few hours a day under certain conditions,” Chevrier said. “The effect of the regolith, or soil, on the water cycle is poorly understood and the Phoenix data provide a unique insight into these processes.” Changes in some of the electrical data from Phoenix may indicate the presence of liquid water, but such changes may be extremely subtle, or even nonexistent.

“You need a continuous layer of fluid in order to detect changes in these parameters,” Chevrier said. “A drop of water won’t do it.”

In addition to examining the activity of water at the Mars Phoenix site, Chevrier and Hanley will examine the composition and nature of the salts in the soil at the site, including the perchlorates. Perchlorates attract water, which means that they may help control humidity in the soil and atmosphere, said Chevrier. The current meteorological models for Mars make use of constants to fit the data, and these models work well for predicting where a Mars explorer should land.

“However, these models are not good for understanding what is going on beyond the constants,” Chevrier said.

The researchers will look at how the soil interacts with the atmosphere by studying data on three processes. First, they will examine the exchange of water vapor between salts so they can find out how the salts affect the atmosphere. They also will look at the kinetics, or speed, of adsorption, where water molecules collect around grains in the soil. Third, they will examine the ice layer under the top layer of soil, looking for signs of sublimation, where the ice becomes gas and diffuses through the soil.

After studying the soil, they will focus on liquid water.

“If the salts can exchange, maybe they will form a brine solution,” Chevrier said. This will require a detailed examination of the data, as Chevrier’s previous study showed that liquid water might be stable for only two or three hours on a given day.

Next they will reinvestigate the chemical data to see if there might be chlorate, the ClO3- ion, present as well as perchlorate. The chemical data don’t completely add up – the number of cations, or ions of positive charge, found by Phoenix does not fit scientists’ current understanding of the chemical composition of the soil. Chevrier and his team believe the explanation may involve the presence of chlorates as well as perchlorate. These two molecules look similar to the instruments found on Phoenix and have about the same stability, but the presence of chlorates in addition to perchlorates might help scientists determine the composition of the original salt assemblage in the soil.

CONTACTS:
Vincent Chevrier, research professor
Arkansas Center for Space and Planetary Sciences
479-575-2183, vchevrie@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

Further reports about: Arkansas Mars PHOENIX Planetary SALT Water Snake chemical data water molecule

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>