Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers squeeze light out of quantum dots

06.04.2009
Physics breakthrough could lead to forward leaps in lasers, telecom and optical computing

McGill University researchers have successfully amplified light with so-called "colloidal quantum dots," a technology that had been written off by many as a dead-end.

Over the last 15 years, repeated quantum dot research efforts failed to deliver on expected improvements in amplification, and many researchers started to believe that an unknown but insurmountable law of physics was blocking their path. Essentially, they said, quantum dots would simply never work well for one of their primary applications.

However, after extensive research, Professor Patanjali (Pat) Kambhampati and colleagues at McGill University's Department of Chemistry determined that colloidal quantum dots do indeed amplify light as promised. The earlier disappointments were due to accidental roadblocks, not by any fundamental law of physics, the researchers said. Their results were published in the March 2009 issue of Physical Review Letters.

Colloidal quantum dots can actually be painted directly on to surfaces, and this breakthrough has enormous potential significance for the future of laser technology, and by extension, for telecommunications, next-generation optical computing and an innumerable array of other applications.

Lasers – beams of high-powered coherent light – have applications in dozens of fields, most notably in telecommunications, where they are used to transmit voice and data over fibre-optic cables. Like sound, radio waves or electricity, laser signals gradually lose power over distance and must be passed through an amplifier to maintain signal strength. Until now, the best available amplification technology was the quantum well, a thin sheet made of semi-conductor material which confines electrons to a one-dimensional plane, and consequently amplifies light. Colloidal quantum dots perform a similar function, but in a three-dimensional box-like structure instead of a flat sheet.

"Everyone expected this little box to be significantly better than a thin sheet," Kambhampati said. "You'd require less electrical power, and you wouldn't need to use arrays of expensive cooling racks. The idea was to make the lasing process as cheap as possible. But the expected results were not really there. So people said 'let's forget about the quantum dot' and they tried rods or onion shapes. It became a game of making a whole soup of different shapes and hoping one of them would work.

"In our view," he continued, "no one had figured out how the simple, prototypical quantum dot actually worked. And if you don't know that, how are you going to rationally construct a device out of it?"

In the end, Kambhampati and his colleagues discovered that the major problem lay in the way researchers had been powering their quantum dot amplifiers.

"We discovered that there was nothing fundamentally wrong with the dots. If you weren't careful in your measurements, when powering the quantum dot, you would accidentally create a parasitic effect that would kill the amplification." he said. "Once we understood this, we were able to take a quantum dot that no one believed could amplify anything, and turned it into the most efficient amplifier ever measured, as far as I know."

ABOUT McGILL UNIVERSITY

McGill University, founded in Montreal, Que., in 1821, is Canada's leading post-secondary institution. It has two campuses, 11 faculties, 10 professional schools, 300 programs of study and more than 33,000 students. McGill attracts students from more than 160 countries around the world. Almost half of McGill students claim a first language other than English – including 6,000 francophones – with more than 6,200 international students making up almost 20 per cent of the student body.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>