Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers squeeze light out of quantum dots

06.04.2009
Physics breakthrough could lead to forward leaps in lasers, telecom and optical computing

McGill University researchers have successfully amplified light with so-called "colloidal quantum dots," a technology that had been written off by many as a dead-end.

Over the last 15 years, repeated quantum dot research efforts failed to deliver on expected improvements in amplification, and many researchers started to believe that an unknown but insurmountable law of physics was blocking their path. Essentially, they said, quantum dots would simply never work well for one of their primary applications.

However, after extensive research, Professor Patanjali (Pat) Kambhampati and colleagues at McGill University's Department of Chemistry determined that colloidal quantum dots do indeed amplify light as promised. The earlier disappointments were due to accidental roadblocks, not by any fundamental law of physics, the researchers said. Their results were published in the March 2009 issue of Physical Review Letters.

Colloidal quantum dots can actually be painted directly on to surfaces, and this breakthrough has enormous potential significance for the future of laser technology, and by extension, for telecommunications, next-generation optical computing and an innumerable array of other applications.

Lasers – beams of high-powered coherent light – have applications in dozens of fields, most notably in telecommunications, where they are used to transmit voice and data over fibre-optic cables. Like sound, radio waves or electricity, laser signals gradually lose power over distance and must be passed through an amplifier to maintain signal strength. Until now, the best available amplification technology was the quantum well, a thin sheet made of semi-conductor material which confines electrons to a one-dimensional plane, and consequently amplifies light. Colloidal quantum dots perform a similar function, but in a three-dimensional box-like structure instead of a flat sheet.

"Everyone expected this little box to be significantly better than a thin sheet," Kambhampati said. "You'd require less electrical power, and you wouldn't need to use arrays of expensive cooling racks. The idea was to make the lasing process as cheap as possible. But the expected results were not really there. So people said 'let's forget about the quantum dot' and they tried rods or onion shapes. It became a game of making a whole soup of different shapes and hoping one of them would work.

"In our view," he continued, "no one had figured out how the simple, prototypical quantum dot actually worked. And if you don't know that, how are you going to rationally construct a device out of it?"

In the end, Kambhampati and his colleagues discovered that the major problem lay in the way researchers had been powering their quantum dot amplifiers.

"We discovered that there was nothing fundamentally wrong with the dots. If you weren't careful in your measurements, when powering the quantum dot, you would accidentally create a parasitic effect that would kill the amplification." he said. "Once we understood this, we were able to take a quantum dot that no one believed could amplify anything, and turned it into the most efficient amplifier ever measured, as far as I know."

ABOUT McGILL UNIVERSITY

McGill University, founded in Montreal, Que., in 1821, is Canada's leading post-secondary institution. It has two campuses, 11 faculties, 10 professional schools, 300 programs of study and more than 33,000 students. McGill attracts students from more than 160 countries around the world. Almost half of McGill students claim a first language other than English – including 6,000 francophones – with more than 6,200 international students making up almost 20 per cent of the student body.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>