Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Solve Mystery of X-Ray Light From Black Holes

18.06.2013
It is a mystery that has stymied astrophysicists for decades: how do black holes produce so many high-power X-rays?

In a new study, astrophysicists from The Johns Hopkins University, NASA and the Rochester Institute of Technology bridged the gap between theory and observation by demonstrating that gas spiraling toward a black hole inevitably results in X-ray emissions.

The paper states that as gas spirals toward a black hole through a formation called an accretion disk, it heats up to roughly 10 million degrees Celsius. The temperature in the main body of the disk is roughly 2,000 times hotter than the sun and emits low-energy or “soft” X-rays. However, observations also detect “hard” X-rays which produce up to 100 times higher energy levels.

Julian Krolik, professor of physics and astronomy in the Zanvyl Krieger School of Arts and Sciences, and his fellow scientists used a combination of supercomputer simulations and traditional hand-written calculations to uncover their findings. Supported by 40 years of theoretical progress, the team showed for the first time that high-energy light emission is not only possible, but is an inevitable outcome of gas being drawn into a black hole.

"Black holes are truly exotic, with extraordinarily high temperatures, incredibly rapid motions and gravity exhibiting the full weirdness of general relativity," Krolik said. "But our calculations show we can understand a lot about them using only standard physics principles."

The team’s work was recently published in the print edition of Astrophysical Journal. Krolik’s collaborators included Jeremy Schnittman, a research astrophysicist from the NASA Goddard Space Flight Center, and Scott Noble, an associate research scientist from the Center for Computational Relativity and Gravitation at RIT. Schnittman was lead author.

As the quality and quantity of high-energy light observations improved over the years, evidence mounted that photons must be created in a hot, tenuous region called the corona. This corona, boiling violently above the comparatively cool disk, is similar to the corona surrounding the sun, which is responsible for much of the ultra-violet and X-ray luminosity seen in the solar spectrum.

While the team’s study of black holes and high-energy light confirms a widely held belief, the role of advancing modern technology should not be overlooked. A grant from the National Science Foundation enabled the team to access Ranger, a supercomputing system at the Texas Advanced Computing Center located at the University of Texas in Austin. Ranger worked over the course of about 27 days, over 600 hours, to solve the equations.

Noble developed the computer simulation solving all of the equations governing the complex motion of inflowing gas and its associated magnetic fields near an accreting black hole. The rising temperature, density and speed of the inflowing gas dramatically amplify magnetic fields threading through the disk, which then exert additional influence on the gas.

The result is a turbulent froth orbiting the black hole at speeds approaching the speed of light. The calculations simultaneously tracked the fluid, electrical and magnetic properties of the gas while also taking into account Einstein's theory of relativity.

“In some ways, we had to wait for technology to catch up with us,” Krolik said. “It’s the numerical simulations going on at this level of quality and resolution that make the results credible.”

The scientists are all familiar with each other as their paths have all crossed with Krolik’s at Johns Hopkins. Schnittman was previously a postdoctoral fellow mentored by Krolik from 2007 to 2010 while Noble was an assistant research scientist and instructor also under Krolik from 2006 to 2009.

The work was supported by the National Science Foundation Grants AST-0507455, AST- 0908336 and AST-1028087.

See video related to this release here:
http://www.youtube.com/watch?v=-OtUVDRL_wM

Latarsha Gatlin | Newswise
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>