Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use skyrmions to store information

09.08.2013
On the cover of "Science": Magnetic nano-knots for data storage

Physicists of the University of Hamburg, Germany, managed for the first time to individually write and delete single skyrmions, a knot-like magnetic entity. Such vortex-shaped magnetic structures exhibit unique properties which make them promising candidates for future data storage devices.


Figure 1: A skyrmion can be imagined as a two-dimensional magnetic knot, in which the magnetic moments are rotating with unique rotational sense by 360° within a plane. The image shows data from a spin-resolved scanning tunneling microscopy experiment together with a sketch of the sample magnetization.

Group of R. Wiesendanger, University of Hamburg

Skyrmions have been in the focus of active research for the last years; however, up to now these states have been merely investigated, a controlled manipulation has not been achieved. Now this has been realized by scientists from the group of Prof. Roland Wiesendanger in Hamburg, Germany: as Science Magazine reports online on 08th of August 2013, the creation and annihilation of single skyrmions, corresponding to writing and deleting of information on a storage medium, has been demonstrated by these researchers.

This work solves one of the longstanding technical problems concerning the future use of skyrmions in information technology.

Future electronic devices are expected to become smaller while increasing their data storage capacities at the same time. This will soon bring classical storage technologies to their physical limits. In conventional memory devices used up to now, magnetic bits consist of many atoms with their magnetic moments aligned parallel to each other like bar magnets. Pointing in defined directions, they can represent the values “1” and “0” which are the basis for information technology. With the continuing miniaturization, the interaction between neighboring bits increases due to magnetic stray fields which can lead to loss of data. In addition, small magnetic bits are less stable against thermal fluctuations which is also called the superparamagnetic limit.

Using more “robust” magnetic structures like skyrmions could be a way out of this technological dead end. These structures can be imagined as a two-dimensional knot in which the magnetic moments are rotating about 360° in a plane with a unique rotational sense (see Fig. 1). These particle-like magnetic knots can be assigned a kind of charge, the topological charge. With this it is possible to assign the bit states “1” and “0” to the existence or non-existence of a skyrmion.

A clever choice of temperature and external magnetic field enabled the scientists of the group of Prof. Roland Wiesendanger to prepare and manipulate single magnetic skyrmions for the first time. They used a two atomic layer thick film of palladium and iron on an iridium crystal. In an external magnetic field this sample exhibits single localized skyrmions with a diameter of a few nanometers that can be imaged in a spin-polarized scanning tunneling microscope. Using small currents from the tip of the microscope these skyrmions can be written and deleted. For the creation the previously parallel magnetic moments are twisted to form a knot-like magnetic state, and for the deletion this knot is unwound again.

„We finally found a magnetic system in which we can locally switch between ordinary ferromagnetic order and a complex spin configuration“, says Dr. Kirsten von Bergmann, senior scientist in the Wiesendanger group. As published in the current issue of the Science Magazine, four skyrmions were specifically addressed and could be created and annihilated (Fig. 1). “We transferred the idea of tying a knot to memorize something to the field of storage technology so we can now store data in a two-dimensional magnetic knot”, explains Ph.D. student Niklas Romming.

Whether skyrmions will be used as data storage units in our computers, tablets, or smartphones, is not foreseeable. The experimentally accomplished writing and deleting of skyrmions, however, has demonstrated the feasibility of this technology and paved the way towards a realization of such devices.

Original publication:
Writing and Deleting Single Magnetic Skyrmions,
N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger

Science (2013).

Further questions:
Dipl.-Chem. Heiko Fuchs
DFG-Collaborative Research Center 668 and
ERC Advanced Grant Group "FURORE"
Institute of Applied Physics
University of Hamburg
Jungiusstr. 9a
20355 Hamburg, Germany
Phone: +49 - 40 - 42838 - 69 59
e-mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Further information:
http://www.nanocience.de
http://www.sfb668.de
http://www.nanoscience.de/furore

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>