Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers reveal behaviors of the tiniest water droplets

UC San Diego, Emory U. team create new simulations on SDSC's 'Gordon' supercomputer

A new study by researchers at the University of California, San Diego, and Emory University has uncovered fundamental details about the hexamer structures that make up the tiniest droplets of water, the key component of life – and one that scientists still don't fully understand.

The research, recently published in The Journal of the American Chemical Society (JACS), provides a new interpretation for experimental measurements as well as a vital test for future studies of our most precious resource. Moreover, understanding the properties of water at the molecular level can ultimately have an impact on many areas of science, including the development of new drugs or advances in climate change research.

"About 60% of our bodies are made of water that effectively mediates all biological processes," said Francesco Paesani, one of the paper's corresponding authors who is an assistant professor in the Department of Chemistry and Biochemistry at UC San Diego and a computational researcher with the university's San Diego Supercomputer Center (SDSC). "Without water, proteins don't work and life as we know it wouldn't exist. Understanding the molecular properties of the hydrogen bond network of water is the key to understanding everything else that happens in water. And we still don't have a precise picture of the molecular structure of liquid water in different environments."

Researchers know that the unique properties of water are due to its capability of forming a highly flexible but still dense hydrogen bond network which adapts according to the surrounding environment. As described in the JACS paper, researchers have determined the relative populations of the different isomers of the water hexamer as they assemble into various configurations called 'cage', 'prism', and 'book'.

The water hexamer is considered the smallest drop of water because it is the smallest water cluster that is three dimensional, i.e., a cluster where the oxygen atoms of the molecules do not lie on the same plane. As such, it is the prototypical system for understanding the properties of the hydrogen bond dynamics in the condensed phases because of its direct connection with ice, as well as with the structural arrangements that occur in liquid water.

This system also allows scientists to better understand the structure and dynamics of water in its liquid state, which plays a central role in many phenomena of relevance to different areas of science, including physics, chemistry, biology, geology, and climate research. For example, the hydration structure around proteins affects their stability and function, water in the active sites of enzymes affects their catalytic power, and the behavior of water adsorbed on atmospheric particles drives the formation of clouds.

"Until now, experiments and calculations on small water clusters have agreed very well up to the pentamer (in chemistry, meaning molecules made of five monomers) but the energetic ordering of the low-lying isomers of the hexamer has always been controversial," said Paesani.

Added corresponding author Joel M. Bowman, with Emory University's Department of Chemistry and the Cherry L. Emerson Center for Scientific Computation: "Ours are the first simulations that use an accurate, full-dimensional representation of the molecular interactions and exact inclusion of nuclear quantum effects through state-of-the-art computational approaches. These allow us to accurately determine the stability of the different isomers over a wide range of temperatures ranging from 0 to 150 Kelvin, (almost minus 460 degrees to about minus 190 degrees Fahrenheit)."

While the prism isomer was identified as the global minimum-energy structure, the quantum simulations predicted that both the cage and prism isomers are present in nearly equal amounts at extremely low temperatures, researchers found. As the temperature increased, more cages, and then book structures, began to appear.

Researchers used SDSC's new data-intensive Gordon supercomputer as well as SDSC's Triton compute cluster to conduct the data-intensive simulations.

"Our simulations took full advantage of Gordon distributing the computations over thousands of processors," said Volodymyr Babin, a researcher with UC San Diego's Department of Chemistry and Biochemistry. "That kind of parallel efficiency would be hardly achievable on a commodity cluster. The scalability of our computational approach stems from the combination of a state-of-the-art simulation technique (replica-exchange) with path-integral molecular dynamics."

Babin said the team is currently working on extending this methodology to study the microscopic origins of the unusual properties of liquid water and ice aiming to assess quantitatively the role played by nuclear quantum effects in the topology of the water phase diagram. This project involves a huge number of data-intensive quantum chemistry computations that are only feasible on supercomputers of the same class as Gordon, he added.

The JACS paper is called "The Water Hexamer: Cage, Prism or Both. Full Dimensional Quantum Simulations Say Both," and also included Yimin Wang from Emory University, who developed the potential used in the simulations. The research was supported by the National Science Foundation (NSF) through grants CHE-1111364 and CHE-1038028, NSF award TG-CHE110009 for computing time on the Extreme Science and Engineering Discovery Environment (XSEDE), and awards from the CCI Center for Aerosol Impacts on Climate and the Environment.

UC San Diego News on the web at:

Jan Zverina | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>