Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers record two-state dynamics in glassy silicon

15.06.2011
Using high-resolution imaging technology, University of Illinois researchers have answered a question that had confounded semiconductor researchers: Is amorphous silicon a glass? The answer? Yes – until hydrogen is added.

Led by chemistry professor Martin Gruebele, the group published its results in the journal Physical Review Letters.

Amorphous silicon (a-Si) is a semiconductor popular for many device applications because it is inexpensive and can be created in a flexible thin film, unlike the rigid, brittle crystalline form of silicon. But the material has its own unusual qualities: It seems to have some characteristics of glass, but cannot be made the way other glasses are.

Most glasses are made by rapidly cooling a melted material so that it hardens in a random structure. But cooling liquid silicon simply results in an orderly crystal structure. Several methods exist for producing a-Si from crystalline silicon, including bombarding a crystal surface so that atoms fly off and deposit on another surface in a random position.

To settle the debate on the nature of a-Si, Gruebele’s group, collaborating with electrical and computer engineering professor Joseph Lyding’s group at the Beckman Institute for Advanced Science and Technology, used a scanning tunneling microscope to take sub nanometer-resolution images of a-Si surfaces, stringing them together to make a time-lapse video.

The video shows a lumpy, irregular surface; each lump is a cluster about five silicon atoms in diameter. Suddenly, between frames, one bump seems to jump to an adjoining space. Soon, another lump nearby shifts neatly to the right. Although few of the clusters move, the action is obvious.

Such cluster “hopping” between two positions is known as two-state dynamics, a signature property of glass. In a glass, the atoms or molecules are randomly positioned or oriented, much the way they are in a liquid or gas. But while atoms have much more freedom of motion to diffuse through a liquid or gas, in a glass the molecules or atom clusters are stuck most of the time in the solid. Instead, a cluster usually has only two adjoining places that it can ferry between.

“This is the first time that this type of two-state hopping has been imaged in a-Si,” Gruebele said. “It’s been predicted by theory and people have inferred it indirectly from other measurements, but this is the first time we’re been able to visualize it.”

The group’s observations of two-state dynamics show that pure a-Si is indeed a glass, in spite of its unorthodox manufacturing method. However, a-Si is rarely used in its pure form; hydrogen is added to make it more stable and improve performance.

Researchers have long assumed that hydrogenation has little to no effect on the random structure of a-Si, but the group’s observations show that this assumption is not quite correct. In fact, adding hydrogen robs a-Si of its two-state dynamics and its categorization as a glass. Furthermore, the surface is riddled with signs of crystallization: larger clusters, cracks and highly structured patches.

Such micro-crystalline structure has great implications for the properties of a-Si and how they are studied and applied. Since most research has been conducted on hydrogenated a-Si, Gruebele sees a great opportunity to delve into the largely unknown characteristics of the glassy state.

“In some ways, I think we actually know less about the properties of glassy silicon than we think we do, because a lot of what’s been investigated of what people call amorphous or glassy silicon isn’t really completely amorphous,” Gruebele said. “We really need to revisit what the properties of a-Si are. There could yet be surprises in the way it functions and the kind of things that we might be able to do with it.”

Next, the group hopes to conduct temperature-depended studies to further establish the activation barriers, or the energy “humps” that the clusters must overcome to move between positions.

The National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://news.illinois.edu/news/11/0614silicon_MartinGruebele.html
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

nachricht Mapping electromagnetic waveforms
22.07.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>