Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers publish enormous catalog of more than 300,000 nearby galaxies

24.09.2013
More than 83,000 volunteer citizen scientists participated in the crowdsourcing project

More than 83,000 volunteer citizen scientists. Over 16 million galaxy classifications. Information on more than 300,000 galaxies. This is what you get when you ask the public for help in learning more about our universe.


This galaxy, NGC 4565, is a disk galaxy viewed at nearly an edge-on angle. Galaxies like these are of particular interest for their links to star formation and the speeds at which galaxies rotate.

The project, named Galaxy Zoo 2, is the second phase of a crowdsourcing effort to categorize galaxies in our universe. Researchers say computers are good at automatically measuring properties such as size and color of galaxies, but more challenging characteristics, such as shape and structure, can currently only be determined by the human eye.

An international group of researchers, led by the University of Minnesota, has just produced a catalog of this new galaxy data. This catalog is 10 times larger than any previous catalog of its kind. It is available online at data.galaxyzoo.org, and a paper describing the project and data was published today in the Monthly Notices of the Royal Astronomical Society.

View examples of images categorized by citizen scientists at http://z.umn.edu/galaxyimages.

"This catalog is the first time we’ve been able to gather this much information about a population of galaxies," said Kyle Willett, a physics and astronomy postdoctoral researcher in the University of Minnesota’s College of Science and Engineering and the paper’s lead author. "People all over the world are beginning to examine the data to gain a more detailed understanding of galaxy types."

Between Feb. 2009 and April 2010, more than 83,000 Galaxy Zoo 2 volunteers from around the world looked at images online gathered from the Sloan Digital Sky Survey. They answered questions about the galaxy, including whether it had spirals, the number of spiral arms present, or if it had galactic bars, which are long extended features that represent a concentration of stars. Each image was classified an average of 40-45 times to ensure accuracy. More than 16 million classifications of more than 300,000 galaxies were gathered representing about 57 million computer clicks.

When volunteers were asked why they got involved in the project, the most common answer was because they enjoyed contributing to science. Researchers estimate that the effort of the volunteers on this project represents about 30 years of full-time work by one researcher.

"With today’s high-powered telescopes, we are gathering so many new images that astronomers just can’t keep up with detailed classifications," said Lucy Fortson, a professor of physics and astronomy in the University of Minnesota’s College of Science and Engineering and one of the co-authors of the research paper. "We could never have produced a data catalog like this without crowdsourcing help from the public."

Fortson said Galaxy Zoo 2 is similar to a census of the galaxies. With this new catalog, researchers now have a snapshot of the different types of galaxies as they are today. The next catalog will tell us about galaxies in the distant past. The catalogs together will let us understand how our universe is changing.

To help create the next catalog, volunteer citizen scientists continue to be needed for the project. To participate, visit www.galaxyzoo.org. No special skills are needed, and volunteers can start classifying galaxies and helping the scientists within minutes of going to the website.

In addition to Fortson and Willett, other authors of the research paper include Chris Lintott, Oxford Astrophysics and Adler Planetarium; Steven Bamford, University of Nottingham; Karen Masters, Robert Nichol and Daniel Thomas, University of Portsmouth and South East Physics Network; Brooke Simmons and Robert Simpson, Oxford Astrophysics; Kevin Casteels, University of Barcelona; Edward Edmondson and Thomas Melvin, University of Portsmouth; Sugata Kaviraj, Oxford Astrophysics and University of Hertfordshire; William Keel, University of Alabama; M. Jordan Raddick, Johns Hopkins University; Kevin Schawinski, ETH Zurich; Ramin Skibba, University of California, San Diego; and Arfon Smith, Adler Planetarium.

The research was funded primarily by the National Science Foundation and the Leverhulme Trust. Galaxy Zoo is one of the many online citizen science projects made available by the Zooniverse.org team.

To read the full research paper entitled "Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey," visit the Monthly Notices of the Royal Astronomical Society website.

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>