Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers publish enormous catalog of more than 300,000 nearby galaxies

24.09.2013
More than 83,000 volunteer citizen scientists participated in the crowdsourcing project

More than 83,000 volunteer citizen scientists. Over 16 million galaxy classifications. Information on more than 300,000 galaxies. This is what you get when you ask the public for help in learning more about our universe.


This galaxy, NGC 4565, is a disk galaxy viewed at nearly an edge-on angle. Galaxies like these are of particular interest for their links to star formation and the speeds at which galaxies rotate.

The project, named Galaxy Zoo 2, is the second phase of a crowdsourcing effort to categorize galaxies in our universe. Researchers say computers are good at automatically measuring properties such as size and color of galaxies, but more challenging characteristics, such as shape and structure, can currently only be determined by the human eye.

An international group of researchers, led by the University of Minnesota, has just produced a catalog of this new galaxy data. This catalog is 10 times larger than any previous catalog of its kind. It is available online at data.galaxyzoo.org, and a paper describing the project and data was published today in the Monthly Notices of the Royal Astronomical Society.

View examples of images categorized by citizen scientists at http://z.umn.edu/galaxyimages.

"This catalog is the first time we’ve been able to gather this much information about a population of galaxies," said Kyle Willett, a physics and astronomy postdoctoral researcher in the University of Minnesota’s College of Science and Engineering and the paper’s lead author. "People all over the world are beginning to examine the data to gain a more detailed understanding of galaxy types."

Between Feb. 2009 and April 2010, more than 83,000 Galaxy Zoo 2 volunteers from around the world looked at images online gathered from the Sloan Digital Sky Survey. They answered questions about the galaxy, including whether it had spirals, the number of spiral arms present, or if it had galactic bars, which are long extended features that represent a concentration of stars. Each image was classified an average of 40-45 times to ensure accuracy. More than 16 million classifications of more than 300,000 galaxies were gathered representing about 57 million computer clicks.

When volunteers were asked why they got involved in the project, the most common answer was because they enjoyed contributing to science. Researchers estimate that the effort of the volunteers on this project represents about 30 years of full-time work by one researcher.

"With today’s high-powered telescopes, we are gathering so many new images that astronomers just can’t keep up with detailed classifications," said Lucy Fortson, a professor of physics and astronomy in the University of Minnesota’s College of Science and Engineering and one of the co-authors of the research paper. "We could never have produced a data catalog like this without crowdsourcing help from the public."

Fortson said Galaxy Zoo 2 is similar to a census of the galaxies. With this new catalog, researchers now have a snapshot of the different types of galaxies as they are today. The next catalog will tell us about galaxies in the distant past. The catalogs together will let us understand how our universe is changing.

To help create the next catalog, volunteer citizen scientists continue to be needed for the project. To participate, visit www.galaxyzoo.org. No special skills are needed, and volunteers can start classifying galaxies and helping the scientists within minutes of going to the website.

In addition to Fortson and Willett, other authors of the research paper include Chris Lintott, Oxford Astrophysics and Adler Planetarium; Steven Bamford, University of Nottingham; Karen Masters, Robert Nichol and Daniel Thomas, University of Portsmouth and South East Physics Network; Brooke Simmons and Robert Simpson, Oxford Astrophysics; Kevin Casteels, University of Barcelona; Edward Edmondson and Thomas Melvin, University of Portsmouth; Sugata Kaviraj, Oxford Astrophysics and University of Hertfordshire; William Keel, University of Alabama; M. Jordan Raddick, Johns Hopkins University; Kevin Schawinski, ETH Zurich; Ramin Skibba, University of California, San Diego; and Arfon Smith, Adler Planetarium.

The research was funded primarily by the National Science Foundation and the Leverhulme Trust. Galaxy Zoo is one of the many online citizen science projects made available by the Zooniverse.org team.

To read the full research paper entitled "Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey," visit the Monthly Notices of the Royal Astronomical Society website.

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>