Researchers propose a new system for quantum simulation

Researchers from the universities in Mainz, Frankfurt, Hamburg and Ulm have proposed a new platform for quantum simulation. In a theoretical paper recently published in Physical Review Letters, they show that a combined system of ultracold trapped ions and fermionic atoms could be used to emulate solid state physics.

This system may outperform possibilities of existing platforms as a number of phenomena found in solid state systems are naturally included, such as the fermionic statistics of the electrons and the electron-sound wave interactions.

Quantum simulation was first proposed by Richard Feynman in 1982. He realized that a calculation of quantum systems is well beyond the ability of any existing computer technology. This is because quantum mechanics features superpositions and entanglement; its dynamics follows many pathways simultaneously. Even the most powerful classical computers lack the computing power to keep track of all those possible outcomes even for small quantum systems. Feynman proposed using an easily accessible and easily controllable laboratory quantum system to mimic the quantum system of interest. This idea is reminiscent to using a crash test dummy to simulate the dynamics of a collision in the classical world.

In their recent paper, the authors calculate that an ion crystal and a degenerate Fermi gas mimic a solid state system built up of atomic cores and electrons, making it a quantum simulator of such a system. The researchers show that a phase transition from a conducting to an insulating state can occur in their solid state look-alike. This unexpected many-body quantum effect is known as the Peierls transition and relies on lattice phonons and the fermionic statistics of the atoms. The authors expect that the system could be further expanded to study for instance phonon-mediated atom-atom interactions, thus simulating the phonon-mediated electron-electron interactions responsible for superconductivity.

Publication:
U. Bissbort et al., Emulating solid-state physics with a hybrid system of ultracold ions and atoms, Physical Review Letters, 20 August 2013
DOI:10.1103/PhysRevLett.111.080501
arXIV:1304.4972 , (2013) [http://arxiv.org/abs/1304.4972]
Image:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_quantensimulationen.jpg
The figure schematically shows a Paul trap with four main electrodes, in which a crystal of Yb+ ions is trapped and overlapped with an optically-trapped cloud of lithium ions.

Source: Ferdinand Schmidt-Kaler.

Contact:
Professor Dr. Ferdinand Schmidt-Kaler
Quantum, Atomic, and Neutron Physics (QUANTUM )
Institute of Physics
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-26234
fax +49 6131 39-25179
e-mail: fsk@uni-mainz.de
http://www.quantenbit.de/index.wt/index.wt/#/persons/ferdinand-schmidt_kaler
Related links:
http://prl.aps.org/abstract/PRL/v111/i8/e080501
– Abstract in Physical Review Letters
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.111.080501
– Synposis: A Solid Look-Alike

Media Contact

Petra Giegerich idw

More Information:

http://www.uni-mainz.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors