Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers peer into nanowires to measure dopant properties

03.04.2009
Semiconductor nanowires — tiny wires with a diameter as small as a few billionths of a meter — hold promise for devices of the future, both in technology like light-emitting diodes and in new versions of transistors and circuits for next generation of electronics.

But in order to utilize the novel properties of nanowires, their composition must be precisely controlled, and researchers must better understand just exactly how the composition is determined by the synthesis conditions.

Nanowires are synthesized from elements that form bulk semiconductors, whose electrical properties are in turn controlled by adding minute amounts of impurities called dopants. The amount of dopant determines the conductivity of the nanowire.

But because nanowires are so small — with diameters ranging from 3 to 100 nanometers — researchers have never been able to see just exactly how much of the dopant gets into the nanowire during synthesis. Now, using a technique called atom probe tomography, Lincoln Lauhon, assistant professor of materials science and engineering at Northwestern University’s McCormick School of Engineering and Applied Science, has provided an atomic-level view of the composition of a nanowire. By precisely measuring the amount of dopant in a nanowire, researchers can finally understand the synthesis process on a quantitative level and better predict the electronic properties of nanowire devices.

The results were published online March 29 in the journal Nature Nanotechnology.

“We simply mapped where all the atoms were in a single nanowire, and from the map we determined where the dopant atoms were,” he says. “The more dopant atoms you have, the higher the conductivity.”

Previously, researchers could not measure the amount of dopant and had to judge the success of the synthesis based on indirect measurements of the conductivity of nanowire devices. That meant that variations in device performance were not readily explained.

“If we can understand the origin of the electrical properties of nanowires, and if we can rationally control the conductivity, then we can specify how a nanowire will perform in any type of device,” he says. “This fundamental scientific understanding establishes a basis for engineering.”

Lauhon and his group performed the research at Northwestern’s Center for Atom Probe Tomography, which uses a Local Electrode Atom ProbeTM microscope to dissect single nanowires and identify their constituents. This instrumentation software allows 3-D images of the nanowire to be generated, so Lauhon could see from all angles just how the dopant atoms were distributed within the nanowire.

In addition to measuring the dopant in the nanowire, Lauhon’s colleague, Peter Voorhees, Frank C. Engelhart Professor of Materials Science and Engineering at Northwestern, created a model that relates the nanowire doping level to the conditions during the nanowire synthesis. The researchers performed the experiment using germanium wires and phosphorous dopants — and they will soon publish results using silicon — but the model provides guidance for nanowires made from other elements, as well.

“This model uses insight from Lincoln’s experiment to show what might happen in other systems,” Voorhees says. “If nanowires are going to be used in device applications, this model will provide guidance as to the conditions that will enable us to add these elements and control the doping concentrations.”

Both professors will continue working on this research to broaden the model.

“We would like to establish the general principles for doping semiconductor nanowires,” Lauhon says.

The paper is titled “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire.” In addition to Lauhon and Voorhees, the other authors are Daniel E. Perea, Eric R. Hemesath, Edwin J. Schwalbach, and Jessica L. Lensch-Falk, all from Northwestern.

The research was supported by the Office of Naval Research and the National Science Foundation.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu
http://www.mccormick.northwestern.edu/news/articles/491

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>