Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers peer into nanowires to measure dopant properties

Semiconductor nanowires — tiny wires with a diameter as small as a few billionths of a meter — hold promise for devices of the future, both in technology like light-emitting diodes and in new versions of transistors and circuits for next generation of electronics.

But in order to utilize the novel properties of nanowires, their composition must be precisely controlled, and researchers must better understand just exactly how the composition is determined by the synthesis conditions.

Nanowires are synthesized from elements that form bulk semiconductors, whose electrical properties are in turn controlled by adding minute amounts of impurities called dopants. The amount of dopant determines the conductivity of the nanowire.

But because nanowires are so small — with diameters ranging from 3 to 100 nanometers — researchers have never been able to see just exactly how much of the dopant gets into the nanowire during synthesis. Now, using a technique called atom probe tomography, Lincoln Lauhon, assistant professor of materials science and engineering at Northwestern University’s McCormick School of Engineering and Applied Science, has provided an atomic-level view of the composition of a nanowire. By precisely measuring the amount of dopant in a nanowire, researchers can finally understand the synthesis process on a quantitative level and better predict the electronic properties of nanowire devices.

The results were published online March 29 in the journal Nature Nanotechnology.

“We simply mapped where all the atoms were in a single nanowire, and from the map we determined where the dopant atoms were,” he says. “The more dopant atoms you have, the higher the conductivity.”

Previously, researchers could not measure the amount of dopant and had to judge the success of the synthesis based on indirect measurements of the conductivity of nanowire devices. That meant that variations in device performance were not readily explained.

“If we can understand the origin of the electrical properties of nanowires, and if we can rationally control the conductivity, then we can specify how a nanowire will perform in any type of device,” he says. “This fundamental scientific understanding establishes a basis for engineering.”

Lauhon and his group performed the research at Northwestern’s Center for Atom Probe Tomography, which uses a Local Electrode Atom ProbeTM microscope to dissect single nanowires and identify their constituents. This instrumentation software allows 3-D images of the nanowire to be generated, so Lauhon could see from all angles just how the dopant atoms were distributed within the nanowire.

In addition to measuring the dopant in the nanowire, Lauhon’s colleague, Peter Voorhees, Frank C. Engelhart Professor of Materials Science and Engineering at Northwestern, created a model that relates the nanowire doping level to the conditions during the nanowire synthesis. The researchers performed the experiment using germanium wires and phosphorous dopants — and they will soon publish results using silicon — but the model provides guidance for nanowires made from other elements, as well.

“This model uses insight from Lincoln’s experiment to show what might happen in other systems,” Voorhees says. “If nanowires are going to be used in device applications, this model will provide guidance as to the conditions that will enable us to add these elements and control the doping concentrations.”

Both professors will continue working on this research to broaden the model.

“We would like to establish the general principles for doping semiconductor nanowires,” Lauhon says.

The paper is titled “Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire.” In addition to Lauhon and Voorhees, the other authors are Daniel E. Perea, Eric R. Hemesath, Edwin J. Schwalbach, and Jessica L. Lensch-Falk, all from Northwestern.

The research was supported by the Office of Naval Research and the National Science Foundation.

Kyle Delaney | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>