Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Tiny Gold Clusters as Top-Notch Catalysts

09.09.2008
Using a pair of microscopy instruments, researchers for the first time achieved state-of-the-art resolution of active gold nanocrystals absorbed onto iron oxide surfaces. The knowledge from this research could potentially improve the effectiveness of catalytic converters that clean automobile exhaust and breathing devices that protect miners and firefighters.

For most of us, gold is only valuable if we possess it in large-sized pieces. However, the “bigger is better” rule isn’t the case for those interested in exploiting gold’s exceptional ability to catalyze a wide variety of chemical reactions, including the oxidation of poisonous carbon monoxide (CO) into harmless carbon dioxide at room temperatures.

That process, if industrialized, could potentially improve the effectiveness of catalytic converters that clean automobile exhaust and breathing devices that protect miners and firefighters. For this purpose, nanoclusters—gold atoms bound together in crystals smaller than a strand of DNA—are the size most treasured.

Using a pair of scanning transmission electron microscopy (STEM) instruments for which spherical aberration (a system fault yielding blurry images) is corrected, researchers at the National Institute of Standards and Technology (NIST), Lehigh University (Bethlehem, Pa.) and Cardiff University (Cardiff, Wales, United Kingdom) for the first time achieved state-of-the-art resolution of the active gold nanocrystals absorbed onto iron oxide surfaces. In fact, the resolution was sensitive enough to even visualize individual gold atoms.

The work is reported in the Sept. 5, 2008, issue of Science.

Surface science studies have suggested that there is a critical size range at which gold nanocrystals supported by iron oxide become highly active as catalysts for CO oxidation. However, the theory is based on research using idealized catalyst models made of gold absorbed on titanium oxide. The NIST/Lehigh/Cardiff aberration-corrected STEM imaging technique allows the researchers to study the real iron oxide catalyst systems as synthesized, identify all of the gold structures present in each sample, and then characterize which cluster sizes are most active in CO conversion.

The research team discovered that size matters a lot—samples ranged from those with little or no catalytic activity (less than 1 percent CO conversion) to others with nearly 100 percent efficiency. Their results revealed that the most active gold nanoclusters for CO conversion are bilayers approximately 0.5-0.8 nanometer in diameter (40 times smaller than the common cold virus) and containing about 10 gold atoms. This finding is consistent with the previous surface science studies done on the gold-titanium oxide models.

A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon and G.J. Hutchings. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science, Vol. 321, Issue 5894, Sept. 5, 2008.

High resolution images available at http://patapsco.nist.gov/ImageGallery/details.cfm?imageid=579

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>