Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers flip the script on magnetocapacitance

01.06.2017

Capacitors, electronic components that store and quickly release a charge, play an important role in many types of electrical circuits. They'll play an equally important role in next-generation spintronic devices, which take advantage of not only electron charge but also spin -- the tiny magnetic moment of each electron.

Two years ago, an international team of researchers showed that by manipulating electron spin at a quantum magnetic tunneling junction -- a nanoscale sandwich made of two metal electrodes with an insulator in the middle -- they could induce a large increase in the junction's capacitance.


The crystal structure of Fe3O4 and Fe electrodes analyzed by RHEED (reflection high energy electron diffraction). The patterns indicate that Fe3O4 has the inverse spinel structure with the same crystal orientation of the MgO substrate, while Fe takes polycrystalline structure.

Credit: Kaiju et. al.

Now, that same research team has flipped the script on the phenomenon, known as magnetocapacitance. In a paper published in the journal Scientific Reports, they show that by using different materials to build a quantum tunneling junction, they were able to alter capacitance by manipulating spins in the opposite way from "normal" magnetocapacitance. This inverse effect, the researchers say, adds one more potentially useful phenomenon to the spintronics toolkit.

"It gives us more parameter space to design devices," said Gang Xiao, chair of the physics department at Brown and one of the paper's coauthors. "Sometimes normal capacitance might be better; sometimes the inverse might be better, depending on the application. This gives us a bit more flexibility."

Magnetocapacitors could be especially useful, Xiao says, in making magnetic sensors for a range of different spintronic devices, including computer hard drives and next-generation random access memory chips.

The research was a collaboration between Xiao's lab at Brown, the lab of Hideo Kaiju and Taro Nagahama at Japan's Hokkaido University and the lab of Osamu Kitakami at Tohoku University.

Xiao has been investigating magnetic tunneling junctions for several years. The tiny junctions can work in much the same way as capacitors in standard circuits. The insulator between the two conducting electrodes slows the free flow of current across the junction, creating resistance and another phenomenon, capacitance.

But what makes tunneling junctions especially interesting is that the amount of capacitance can be changed dynamically by manipulating the spins of the electrons within the two metal electrodes. The electrodes are magnetic, meaning that electrons spinning within each electrode are pointed in one particular direction. The relative spin direction between two electrodes determines how much capacitance is present at the junction.

In their initial work on this phenomenon, Xiao and the research team showed just how large the change in capacitance could be. Using electrodes made of iron-cobalt-boron, they showed that by flipping spins from anti-parallel to parallel, they could increase capacitance in experiments by 150 percent. Based on those results, the team developed a theory predicting that, under ideal conditions, the change in capacitance could actually go as high as 1,000 percent.

The theory also suggested that using electrodes made from different types of metals would create an inverse magnetocapacitance effect, one in which anti-parallel spins create more capacitance than parallel spins. That's exactly what they showed in this latest study.

"We used iron for one electrode and iron oxide for the other," Xiao said. "The electrical properties of the two are mirror images of each other, which is why we observed this inverse magnetocapacitance effect."

Xiao says the findings not only suggest a larger parameter space for the use of magnetocapacitance in spintronic devices, they also provide important verification for the theory scientists use to explain the phenomenon.

"Now we see that the theories fit well with the experiment, so we can be confident in using our theoretical models to maximize these effects, either the 'normal' effect or the inverse effect that we have demonstrated here," Xiao said.

###

The work was supported by the National Science Foundation (DMR-1307056), the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (B), 15H03981), the Japanese Ministry of Education, Culture, Sports, Science and Technology (Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials) and the Center for Spintronics Research Network at Tohoku University.

Release issued jointly Brown University, Tohoku University and Hokkaido University

Media Contact

Kevin Stacey
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>