Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find New Way to Measure Cosmic Distances

10.06.2009
Researchers have found a way to measure distances to objects three times farther away in outer space than previously possible, by extending a common measurement technique. They discovered that a rare type of giant star, often overlooked by astronomers, could make an excellent signpost for distances up to 300 million light years -- and beyond.

Ohio State University researchers have found a way to measure distances to objects three times farther away in outer space than previously possible, by extending a common measurement technique.

They discovered that a rare type of giant star, often overlooked by astronomers, could make an excellent signpost for distances up to 300 million light years -- and beyond.

Along the way, they also learned something new about how these stars evolve.

Cepheid variables -- giant stars that pulse in brightness -- have long been used as reference points for measuring distances in the nearby universe, said Jonathan Bird, doctoral student in astronomy at Ohio State. Classical cepheids are bright, but beyond 100 million light years from Earth, their signal gets lost among other bright stars.

In a press briefing at the American Astronomical Society meeting in Pasadena, CA, Bird revealed that a rare and even brighter class of cepheid -- one that pulses very slowly -- can potentially be used as a beacon to measure distances three times farther than their classical counterparts.

This project is the latest in principal investigator Krzysztof Stanek's effort to gauge the size and age of the universe with greater precision.

There are several methods for calculating the distance to stars, and astronomers often have to combine methods to indirectly measure a distance. The usual analogy is a ladder, with each new method a higher rung above another. At each new rung of the cosmic distance ladder, the errors add up, reducing the precision of the overall measurement. So any single method that can skip the rungs of the ladder is a prized tool for probing the universe.

Stanek, professor of astronomy at Ohio State, applied a direct measurement technique in 2006, when he used the light emerging from a binary star system in the galaxy M33 to measure the distance to that galaxy for the first time. M33 is 3 million light years from Earth.

This new technique using so-called "ultra long period cepheids" (ULP cepheids) is different. It's an indirect method, but this initial study suggests that the method would work for galaxies that are much farther away than M33.

"We found ultra long period cepheids to be a potentially powerful distance indicator. We believe they could provide the first direct stellar distance measurements to galaxies in the range of 50-100 megaparsecs (150 million - 326 million light years) and well beyond that," Stanek said.

Because researchers generally don't take note of ultra long period cepheids, there are few of them in the astronomical record. For this study, Stanek, Bird and Ohio State doctoral student Jose Prieto uncovered 18 ULP cepheids from the literature.

Each was located in a nearby galaxy, such as the Small Magellanic Cloud. The distances to these nearby galaxies are well known, so the astronomers used that knowledge to calibrate the distance to the ULP cepheids.

They found that they could use ULP cepheids to determine distance with a 10-20 percent error -- a rate typical of other methods that make up the cosmic distance ladder.

"We hope to reduce that error as more people take note of ULP cepheids in their stellar surveys," Bird said. "What we've shown so far is that the method works in principle, and the results are encouraging."

Bird explained why astronomers have ignored ULP cepheids in the past.

Short period cepheids, those that brighten and dim every few days, make good distance markers in space because their period is directly related to their brightness -- and astronomers can use that brightness information to calculate the distance. Polaris, the North Star, is a well known and classical cepheid.

But astronomers have always thought that ULP cepheids, which brighten and dim over the course of a few months or longer, don't obey this relation. They are larger and brighter than the typical cepheid. In fact, they are larger and brighter than most stars; in this study, for example, the 18 ULP cepheids ranged in size from 12-20 times the mass of our sun.

The brightness makes them good distance markers, Stanek said. Typical cepheids are harder to spot in distant galaxies, as their light blends in with other stars. ULP cepheids are bright enough to stand out.

Astronomers have also long suspected that ULP cepheids don't evolve the same way as other cepheids. In this study, however, the Ohio State team found the first evidence of a ULP cepheid evolving as a more classical cepheid does.

A classical cepheid will grow hotter and cooler many times over its lifetime. In-between, the outer layers of the star become unstable, which causes the changes in brightness. ULP cepheids are thought to go through this period of instability only once, and going in only one direction -- from hotter to cooler.

But as the astronomers pieced together data from different parts of the literature for this study, they discovered that one of the ULP cepheids -- a star in the Small Magellanic Cloud dubbed HV829 -- is clearly moving in the opposite direction.

Forty years ago, HV829 pulsed every 87.6 days. Now it pulses every 84.4 days. Two other measurements found in the literature confirm that the period has been shrinking steadily in the decades in between, which indicates that the star itself is shrinking, and getting hotter.

The astronomers concluded that ULP cepheids may help astronomers not only measure the universe, but also learn more about how very massive stars evolve.

Some of these results were reported in the Astrophysical Journal in April 2009. Since that paper was written, the Ohio State astronomers have started using the Large Binocular Telescope in Tucson, Arizona to look for more ULP cepheids. Stanek says that they've found a few good candidates in the galaxy M81, but those results have yet to be confirmed.

This research was funded by the National Science Foundation.

Contact: Krzysztof Stanek, (614) 292-3433; Stanek.32@osu.edu
Jonathan Bird, (614) 292-7785; Bird.73@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>