Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers evaluate Bose-Einstein condensates for communicating among quantum computers

Ultra-fast computing

Quantum computers promise to perform certain types of operations much more quickly than conventional digital computers. But many challenges must be addressed before these ultra-fast machines become available, among them, the loss of order in the systems – a problem known as quantum decoherence – which worsens as the number of bits in a quantum computer increases.

One proposed solution is to divide the computing among multiple small quantum computers that would work together much as today's multi-core supercomputers team up to tackle big digital operations. The individual computers in such a system could communicate quantum information using Bose-Einstein condensates (BECs) – clouds of ultra-cold atoms that all exist in exactly the same quantum state. The approach could address the decoherence problem by reducing the number of bits necessary for a single computer.

Now, a team of physicists at the Georgia Institute of Technology has examined how this Bose-Einstein communication might work. The researchers determined the amount of time needed for quantum information to propagate across their BEC, essentially establishing the top speed at which such quantum computers could communicate.

"What we did in this study was look at how this kind of quantum information would propagate," said Chandra Raman, an associate professor in Georgia Tech's School of Physics. "We are interested in the dynamics of this quantum information flow not just for quantum information systems, but also more generally for fundamental problems in physics."

The research is scheduled to be published in the April 19 online edition of the journal Physical Review Letters. The research was funded by the U.S. Department of Energy (DOE) and the National Science Foundation (NSF). The work involved both an experimental physics group headed by Raman and a theoretical physics group headed by associate professor Carlos Sa De Melo, also in the Georgia Tech School of Physics.

The researchers first assembled a gaseous Bose-Einstein condensate that consisted of as many as three million sodium atoms cooled to nearly absolute zero. To begin the experiment, they switched on a magnetic field applied to the BEC that instantly placed the system out of equilibrium. That triggered spin-exchange collisions as the atoms attempted to transition from one ground state to a new one. Atoms near one another became entangled, pairing up with one atom's spin pointing up, and the other's pointing down. This pairing of opposite spins created a correlation between pairs of atoms that moved through the entire BEC as it established a new equilibrium.

The researchers, who included graduate student Anshuman Vinit and former postdoctoral fellow Eva Bookjans, measured the correlations as they spread through the cloud of cold atoms. At first, the quantum entanglement was concentrated in space, but over time, it spread outward like drop of dye diffuses through water.

"You can imagine having a drop of dye that is concentrated at one point in space," Raman said. "Through diffusion, the dye molecules move throughout the water, slowly spreading throughout the entire system."

The research could help scientists anticipate the operating speed for a quantum computing system composed of many cores communicating through a BEC.

"This propagation takes place on the time scale of ten to a hundred milliseconds," Raman said. "This is the speed at which quantum information naturally flows through this kind of system. If you were to use this medium for quantum communication, that would be its natural time scale, and that would set the timing for other processes."

Though relevant to communication of quantum information, the process also showed how a large system undergoing a phase transition does so in localized patches that expand to attempt to incorporate the entire system.

"An extended system doesn't move from one phase to another in a uniform way," said Raman. "It does this locally. Things happen locally that are not connected to one another initially, so you see this inhomogeneity."

Beyond quantum computing, the results may also have implications for quantum sensing – and for the study of other physical systems that undergo phase transitions.

"Phase transitions have universal properties," Raman noted. "You can take the phase transitions that happen in a variety of systems and find that they are described by the same physics. It is a unifying principle."

Raman hopes the work will lead to new ways of thinking about quantum computing, regardless of its immediate practical use.

"One paradigm of quantum computing is to build a linear chain of as many trapped ions as possible and to simultaneously engineer away as many challenges as possible," he said. "But perhaps what may be successful is to build these smaller quantum systems that can communicate with one another. It's important to try as many things as possible and to keep an open mind. We need to try to understand these systems as well as we can."

This research was supported by the Department of Energy (DOE) through grant DE-FG-02-03ER15450 and by the National Science Foundation under grant PHY-1100179. The conclusions in this article are those of the principal investigator and do not necessarily represent the official views of the DOE or the NSF.

John Toon | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>