Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Technique to Kick a Record Number of Electrons Out of an Atom with an X-Ray Laser

19.11.2012
Supercharging is a technique no longer confined to automotive enthusiasts.

Artem Rudenko, a new assistant professor of physics at Kansas State University and member of the James R. Macdonald Laboratory, was one of the principal investigators in an international physics collaboration that used the world's most powerful X-ray laser to supercharge an atom.

By stripping a record 36 electrons from a xenon atom, researchers were able to bring the atom to a high positively charged state thought to unachievable with X-ray energy.

The findings will help scientists create and study extreme new states of matter, such as highly charged plasma, by fine-tuning the laser's X-ray radiation wavelengths in resonance with atomic levels -- resulting in ultra-efficient electron removal.

Conversely, researchers can use the findings to tune the laser wavelength to avoid enhanced electron stripping. This will reduce damage caused by X-rays and help produce better quality images of nano-world objects.

"Taking single-shot, real-time images of viruses, proteins or even smaller objects is a long-standing dream that came close to reality with the advent of powerful X-ray laser like the Linac Coherent Light Source," Rudenko said. "The main problem, however, is that such a laser also inevitably destroys the sample in the process of acquiring an image, and reducing this destruction by any means is critical for producing high-quality images."

The study on supercharging was performed through a large international collaboration led by Daniel Rolles from Max Planck Advanced Study Group, or ASG, in Hamburg, Germany, along with Rudenko and Joachim Ullrich, now a president of the PTB, the German national metrology institute.

"We brought 11 tons of equipment funded by the German Max-Planck Society to LCLS, which is a unique 1.5 km-long X-ray laser operated by Stanford University for the U.S. Department of Energy, and involved scientists from 19 research centers all over the world," Rudenko said. "We also needed to come back one year after our first experiment and repeat the measurements to understand the results. From all that we knew about this process we expected to strip at most 26 electrons, and it immediately became clear that the existing theoretical approaches have to be modified."

For the second leg of experiments physicists chose even higher X-ray energy -- and, surprisingly, saw fewer electrons kicked out of the atom. The key was that even though the energy was higher, it was not in resonance.

"While it is known that resonances in atoms affect their charged states, it was unclear what a dramatic effect this could have in heavy atoms like xenon under ultra-intense X-rays," Rudenko said. "Besides ejecting dozens of electrons, this more than doubled the energy absorbed per atom compared to all expectations."

Follow-up experiments led by Rudenko discovered similar effects in krypton atoms and several molecules.

The results were analyzed by Benedict Rudek from ASG Hamburg and reported in Nature Photonics journal in the article, "Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses," http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.261.html.

For more information on the Linac Coherent Light Source, or LCLS, and the instrument used for the project, go to https://portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx and http://today.slac.stanford.edu/feature/2009/lcls-camp.asp.

Artem Rudenko, 785-532-4470, rudenko@phys.ksu.edu

Artem Rudenko | Newswise Science News
Further information:
http://www.ksu.edu

Further reports about: ASG Atom Coherent LCLS X-ray X-ray microscopy X-rays electrons laser system technique

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>