Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Technique to Kick a Record Number of Electrons Out of an Atom with an X-Ray Laser

19.11.2012
Supercharging is a technique no longer confined to automotive enthusiasts.

Artem Rudenko, a new assistant professor of physics at Kansas State University and member of the James R. Macdonald Laboratory, was one of the principal investigators in an international physics collaboration that used the world's most powerful X-ray laser to supercharge an atom.

By stripping a record 36 electrons from a xenon atom, researchers were able to bring the atom to a high positively charged state thought to unachievable with X-ray energy.

The findings will help scientists create and study extreme new states of matter, such as highly charged plasma, by fine-tuning the laser's X-ray radiation wavelengths in resonance with atomic levels -- resulting in ultra-efficient electron removal.

Conversely, researchers can use the findings to tune the laser wavelength to avoid enhanced electron stripping. This will reduce damage caused by X-rays and help produce better quality images of nano-world objects.

"Taking single-shot, real-time images of viruses, proteins or even smaller objects is a long-standing dream that came close to reality with the advent of powerful X-ray laser like the Linac Coherent Light Source," Rudenko said. "The main problem, however, is that such a laser also inevitably destroys the sample in the process of acquiring an image, and reducing this destruction by any means is critical for producing high-quality images."

The study on supercharging was performed through a large international collaboration led by Daniel Rolles from Max Planck Advanced Study Group, or ASG, in Hamburg, Germany, along with Rudenko and Joachim Ullrich, now a president of the PTB, the German national metrology institute.

"We brought 11 tons of equipment funded by the German Max-Planck Society to LCLS, which is a unique 1.5 km-long X-ray laser operated by Stanford University for the U.S. Department of Energy, and involved scientists from 19 research centers all over the world," Rudenko said. "We also needed to come back one year after our first experiment and repeat the measurements to understand the results. From all that we knew about this process we expected to strip at most 26 electrons, and it immediately became clear that the existing theoretical approaches have to be modified."

For the second leg of experiments physicists chose even higher X-ray energy -- and, surprisingly, saw fewer electrons kicked out of the atom. The key was that even though the energy was higher, it was not in resonance.

"While it is known that resonances in atoms affect their charged states, it was unclear what a dramatic effect this could have in heavy atoms like xenon under ultra-intense X-rays," Rudenko said. "Besides ejecting dozens of electrons, this more than doubled the energy absorbed per atom compared to all expectations."

Follow-up experiments led by Rudenko discovered similar effects in krypton atoms and several molecules.

The results were analyzed by Benedict Rudek from ASG Hamburg and reported in Nature Photonics journal in the article, "Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses," http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.261.html.

For more information on the Linac Coherent Light Source, or LCLS, and the instrument used for the project, go to https://portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx and http://today.slac.stanford.edu/feature/2009/lcls-camp.asp.

Artem Rudenko, 785-532-4470, rudenko@phys.ksu.edu

Artem Rudenko | Newswise Science News
Further information:
http://www.ksu.edu

Further reports about: ASG Atom Coherent LCLS X-ray X-ray microscopy X-rays electrons laser system technique

More articles from Physics and Astronomy:

nachricht Attosecond camera for nanostructures
31.05.2016 | Max-Planck-Institut für Quantenoptik

nachricht Rosetta’s comet contains ingredients for life
30.05.2016 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>