Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover superatoms with magnetic shells

09.06.2011
A team of Virginia Commonwealth University scientists has discovered a new class of 'superatoms' – a stable cluster of atoms that can mimic different elements of the periodic table – with unusual magnetic characteristics.

The superatom contains magnetized magnesium atoms, an element traditionally considered as non-magnetic. The metallic character of magnesium along with infused magnetism may one day be used to create molecular electronic devices for the next generation of faster processors, larger memory storage and quantum computers.

In a study published online in the Early Edition of the Proceedings of the National Academy of Sciences, the team reports that the newly discovered cluster consisting of one iron and eight magnesium atoms acts like a tiny magnet that derives its magnetic strength from the iron and magnesium atoms. The combined unit matches the magnetic strength of a single iron atom while preferentially allowing electrons of specific spin orientation to be distributed throughout the cluster.

Through an elaborate series of theoretical studies, Shiv N. Khanna, Ph.D., a Commonwealth professor in the VCU Department of Physics, and his team examined the electronic and magnetic properties of clusters having one iron atom surrounded by multiple magnesium atoms. The team included instructor J. Ulises Reveles and Victor M. Medel, a post-doctoral associate, both from VCU; A. W. Castleman Jr., Ph.D., the Evan Pugh Professor of Chemistry and Physics, and Eberly Distinguished chair in Science in the Department of Chemistry at Penn State University; and Prasenjit Sen and Vikas Chauhan from the Harish-Chandra Research Institute in Allahabad, India.

"Our research opens a new way of infusing magnetic character in otherwise non-magnetic elements through controlled association with a single magnetic atom. An important objective was to discover what combination of atoms would lead to a species that is stable as we put multiple units together," said Khanna.

"The combination of magnetic and conducting attributes was also desirable. Magnesium is a good conductor of electricity and, hence, the superatom combines the benefit of magnetic character along with ease of conduction through its outer skin," he said.

The team found that when the cluster had eight magnesium atoms it acquired extra stability due to filled electronic shells that were far separated from the unfilled shells. An atom is in a stable configuration when its outermost shell is full and far separated from unfilled shells, as found in inert gas atoms. Khanna said that such phenomena commonly occur with paired electrons which are non-magnetic, but in this study the magnetic electronic shell showed stability.

According to Khanna, the new cluster had a magnetic moment of four Bohr magnetons, which is almost twice that of an iron atom in solid iron magnets. A magnetic moment is a measure of the magnetic strength of the cluster. Although the periodic table has more than one hundred elements, there are only nine elements that exhibit magnetic character in solid form.

"A combination such as the one we have created here can lead to significant developments in the area of "molecular electronics" where such devices allow the flow of electrons with particular spin orientation desired for applications such as quantum computers. These molecular devices are also expected to help make denser integrated devices, higher data processing, and other benefits," said Reveles.

Khanna and his team are conducting preliminary studies on the assemblies of the new superatoms and have made some promising observations that may have applications in spintronics. Spintronics is a process using electron spin to synthesize new devices for memory and data processing.

This research was supported by the U.S. Department of Energy.

EDITOR'S NOTE: A copy of the study is available for reporters by email request from pnasnews@nas.edu.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Medical Wellness VCU magnetic moment quantum computer

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>