Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop optical displays from water and air

14.06.2012
For many years, scientists have been pursuing ways to mimic the perplexing capability of the lotus leaf to repel water. Lotus leaves hate water so much that droplets effortlessly roll off the surface, keeping it clean from dirt.
Now an international team of researchers led by Aalto University have come up with an entirely new concept of writing and displaying information on surfaces using simply water. They exploit the unique way a trapped layer of air behaves on a lotus-inspired dual-structured water-repelling surface immersed under water.

To achieve the extreme water-repellency of the lotus leaf, a surface needs to be superhydrophobic: it must have microscopic surface structures that prevent water from wetting the surface completely, leaving a thin layer of air between water and the surface. When such a surface is immersed in water, a trapped air layer covers the entire surface.

The researchers lead by Dr. Robin Ras at Aalto University in Finland, University of Cambridge and Nokia Research Center Cambridge fabricated a surface with structures in two size scales: microposts that have a size of ten micrometers and tiny nanofilaments that are grown on the posts. On such a two-level surface the air layer can exist in two different shapes (wetting states) that correspond to the two size scales. The researchers found that one can easily switch between the two states locally using a nozzle to create over- or underpressure in the water, in order to change the air layer to either state.

“The minimal energy needed to switch between the states means the system is bistable, which is the essential property of memory devices, for example”, Academy Research Fellow Dr. Robin Ras points out. However, there is a feature that makes it all the more interesting: there is a striking optical contrast between the states due to a change in the roughness of the water-air interface. “Combined with the optical effect, the surface is also a bistable reflective display.”

The switching only involves a change in the shape of the air layer − nothing happens to the solid surface itself. This is demonstrated by writing shapes on the surface underwater (making use of the contrast between the states) and taking the sample out of water: the surface emerges completely dry, and no traces of the writing remain.

The method for manipulating the air layer with the nozzle was developed by Tuukka Verho, graduate student in Aalto University. He was able to show that the reversible switching can be done with precision in a pixel-by-pixel fashion.

“This result represents the first step in making non-wettable surfaces a platform for storing or even processing information”, says Academy professor Olli Ikkala. Until now, lotus-inspired surfaces have been mainly developed for applications like self-cleaning, anti-icing or flow drag reduction. This research is a landmark example how the Nature teaches materials scientists towards functional materials.

An article entitled “Reversible switching between superhydrophobic states on a hierarchically structured surface” is published in PNAS, Proceedings of the National Academy of Sciences of the USA, and provides more in depth information about this project.

The article on the web: http://www.pnas.org/cgi/doi/10.1073/pnas.1204328109

A print quality graphic about the research available at http://media.digtator.fi/digtator/tmp/8d60ef17018948639962b423297d31c6/preview.html (Link valid until 14 July)

Watch a video: http://www.youtube.com/watch?v=AEWPIjLbrSE
Further information/interviews:

Dr. Robin Ras
robin.ras@aalto.fi
tel. +358 9 470 23169 (EET)
Aalto University School of Science, Department of Applied Physics

Johanna Lassy | Aalto University
Further information:
http://www.aalto.fi
http://www.youtube.com/watch?v=AEWPIjLbrSE

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>