Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Entangled Photons from Quantum Dots

20.11.2009
To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another.

Now, physicists at the Joint Quantum Institute (JQI), a collaborative organization of the National Institute of Standards and Technology (NIST) and the University of Maryland, have developed a promising new source of entangled photons using quantum dots tweaked with a laser.

The JQI technique may someday enable more compact and convenient sources of entangled photon pairs than presently available for quantum information applications such as the distribution of “quantum keys” for encrypting sensitive messages.

Quantum dots are nanometer-scale bits of semiconductor—so small that electrical charges in the dots are confined in all directions. They can be made to emit photons—fluoresce—by pumping in energy to create so-called “excitons,” a pairing of an electron and the electron-less “hole.” When the electron falls back into the hole, the excess energy is released as a photon. Quantum dots can also host the even more exotic “biexciton,” composed of two electrons and two holes.

When a short-lived biexciton decomposes, it undergoes two drops in energy, analogous to descending two rungs of a ladder, and a photon is released at each stage. Physicists have long been trying to use this process to get pairs of entangled photons from quantum dots. What makes entanglement possible is that the biexciton could decay along one of two possible pathways, analogous to two different ladders that both get it to the ground. During its descent it releases a pair of photons with a different kind of polarization (electric field direction) depending on the ladder it descends. If the energy drop at each stage is exactly the same in both pathways, so that the ladders look identical, the pathways become indistinguishable—and as a result the biexciton releases photons with undetermined polarization values. Measuring a photon would both determine its polarization and instantly define its partners—a hallmark of entanglement.

But imperfections within the structure of the quantum dot create differences in the energy levels (rung heights) between the two pathways, making them distinguishable and creating photons with predetermined, clearly defined polarizations. Except in rare instances, this holds true even for the reliable, widely fabricated indium gallium arsenide (InGaAs) dots that JQI researcher Andreas Muller and his colleagues created at NIST. Muller and his coworkers solved this problem by beaming a laser at the quantum dot. The laser’s electric field shifts the energy levels in one of the pathways so that the two pathways match up, resulting in the emission of entangled photons.

Entangled photons have come from individual quantum dots before, but they have been spotted by hunting for dots in large samples whose imperfections accidentally gave the two pathways identical energy structure. JQI group leader Glenn Solomon says that this entanglement technique could work for a wide variety of quantum dots. Though the dots must be cooled to cryogenic temperatures, he adds that quantum dots could offer advantages as entanglement sources over their conventional crystal counterparts as they are less bulky and can conveniently produce one pair of entangled photons at a time, instead of in bunches.

* A. Muller, W.F.Fang, J. Lawall and G.S. Solomon. Creating polarization-entangled photons from a quantum dot. Upcoming in Physical Review Letters.

Ben Stein | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>