Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers create 'MRI' of the sun's interior motions

A team of scientists has created an "MRI" of the Sun's interior plasma motions, shedding light on how it transfers heat from its deep interior to its surface.

The result, which appears in the journal the Proceedings of the National Academy of Sciences, upends our understanding of how heat is transported outwards by the Sun and challenges existing explanations of the formation of sunspots and magnetic field generation.

The work was conducted by researchers from NYU's Courant Institute of Mathematical Sciences and its Department of Physics, Princeton University, the Max Planck Institute, and NASA.

The Sun's heat, generated by nuclear fusion in its core, is transported to the surface by convection in the outer third. However, our understanding of this process is largely theoretical—the Sun is opaque, so convection cannot be directly observed. As a result, theories largely rest on what we know about fluid flow and then applying them to the Sun, which is primarily composed of hydrogen, helium, and plasma.

Developing a more precise grasp of convection is vital to comprehending a range of phenomena, including the formation of sunspots, which have a lower temperature than the rest of the Sun's surface, and the Sun's magnetic field, which is created by its interior plasma motions.

In order to develop their "MRI" of the Sun's plasma flows, the researchers examined high-resolution images of the Sun's surface taken by the Helioseismic and Magnetic Imager (HMI) onboard NASA's Solar Dynamics Observatory. Using a 16-million pixel camera, HMI measures motions on the Sun's surface caused by convection.

Once the scientists captured the precise movement waves on the Sun's surface, they were able to calculate its unseen plasma motions. This procedure is not unlike measuring the strength and direction of an ocean's current by monitoring the time it takes a swimmer to move across the water—currents moving against the swimmer will result in slower times while those going in the same direction will produce faster times, with stronger and weaker currents enhancing or diminishing the impact on the swimmer.

What they found significantly departed from existing theory--specifically, the speed of the Sun's plasma motions were approximately 100 times slower than scientists had previously projected.

"Our current theoretical understanding of magnetic field generation in the Sun relies on these motions being of a certain magnitude," explained Shravan Hanasoge, an associate research scholar in geosciences at Princeton University and a visiting scholar at NYU's Courant Institute of Mathematical Sciences. "These convective motions are currently believed to prop up large-scale circulations in the outer third of the Sun that generate magnetic fields."

"However, our results suggest that convective motions in the Sun are nearly 100 times smaller than these current theoretical expectations," continued Hanasoge, also a postdoctoral fellow at the Max Plank Institute in Katlenburg-Lindau, Germany. "If these motions are indeed that slow in the Sun, then the most widely accepted theory concerning the generation of solar magnetic field is broken, leaving us with no compelling theory to explain its generation of magnetic fields and the need to overhaul our understanding of the physics of the Sun's interior."

The study's other co-authors were Thomas Duvall, an astrophysicist at NASA, and Katepalli Sreenivasan, University Professor in NYU's Department of Physics and Courant Institute. Sreenivasan is also Senior Vice Provost for Science and Technology for the Global Network University at NYU and Provost of Polytechnic Institute of NYU.

James Devitt | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>