Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers butter up the old ‘scratch test’ to make it tough

27.05.2011
It might not seem like scraping the top of a cold stick of butter with a knife could be a scientific test, but engineers at MIT say the process is very similar to the “scratch test,” which is perhaps the oldest known way to assess a material’s hardness and strength — or, in scientific language, its resistance to deformation.

Using the scraping of butter as a starting point, the engineers launched a study to see if the age-old scratch test could be used to determine a material’s toughness, or how well it resists fracturing after a small crack has already formed. The answer: The scratch test is indeed measuring crack resistance rather than strength and is valid on material samples of any size. This means that engineers now have a simple “new” test for assessing a material’s fracture properties.

“Fracture mechanics has not reached the same level of pervasiveness in most engineering practice as strength theories, and this is due to the fact that it is difficult to determine fracture properties of materials, from soft clay to hard concrete,” says Franz-Josef Ulm, the George Macomber Professor of Civil and Environmental Engineering (CEE) at MIT. “The test which we propose here is just this: a straightforward test for the engineering practice.”

In a paper in Physical Review Letters that appeared online May 20, co-authors Ulm; Pedro Reis, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering; and CEE graduate student Ange-Therese Akono — who is first author on the paper — describe their research and findings.

They performed laboratory scratch tests on paraffin wax, which is similar to butter but more stable at room temperature, Reis says, and used theory and mathematics to pare the process down to its essential components. They then created a mathematical model of the entire physical “scratch” process, which shows that the area of contact between the scratching implement and the test material is of primary importance in determining whether the scratch test is assessing strength or toughness.

They knew that when measuring a material’s strength, the force required to make a scratch would always increase at the same rate as the contact area (width times depth) of the scratching tool.

But when measuring a material’s toughness, the mechanics are complicated by the energy released when chemical bonds break as the new surfaces are created and a fracture grows. Because of this, the force does not increase at the same rate as the area of contact. Instead, the force exhibits a distinct scaling reminiscent of a fracture process — that is, a wider cut requires more force than a deeper one. (Specifically, the force increases at the same rate as the width times the square root of the depth.)

Back in the lab, the engineers changed the dimensions of the test to see if a wider scratching implement would require more force than a narrow one. It did. And that seemingly minor change in one dimension gave them their answer: The scratch test is assessing a material’s fracture toughness, not its hardness nor strength properties. It assesses the hardness and strength only in cases where the area of contact between the scratching implement and the material is so small that a true indentation is made rather than a scratch. Now, knowing the width and depth of the scratch and the horizontal force, researchers can now determine the fracture toughness of a material.

“The advantage of a scratch test is that it works on both soft and hard materials and on very small samples,” Akono says. “This method enables us to isolate brittle-crack propagation and neglect plastic deformation.”

They confirmed their findings with additional tests on cement paste, limestone and steel.

“You might think that fracture, or how things break, is an old field of study,” Reis says. “But it’s relatively new compared to the tests of a material’s hardness. Now, using the very old method of the scratch test, we have a relatively simple new means for measuring a material’s toughness.”

“The scalability of scratching for different probes and depths will open new venues for the miniaturization of the technique, which will help us understand fracture properties of materials at very small scales,” Ulm says. “We also know — finally — that it takes less effort to make a narrow, deep cut in cold butter than a wide one. And that is science we can use at the dinner table.”

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>