Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers analyse 'rock dissolving' method of geoengineering

22.01.2013
The benefits and side effects of dissolving particles in our ocean's surfaces to increase the marine uptake of carbon dioxide (CO2), and therefore reduce the excess amount of it in the atmosphere, have been analysed in a new study published today.

The study, published today, 22 January, in IOP Publishing's journal Environmental Research Letters, assesses the impact of dissolving the naturally occurring mineral olivine and calculates how effective this approach would be in reducing atmospheric CO2.

The researchers, from the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, Germany, calculate that if three gigatonnes of olivine were deposited into the oceans each year, it could compensate for only around nine per cent of present day anthropogenic CO2 emissions.

This long discussed 'quick fix' method of geoengineering is not without environmental drawbacks; the particles would have to be ground down to very small sizes (around one micrometre) in order to be effective. The grinding process would consume energy and therefore emit varying amounts of CO2, depending on the sort of power plants used to provide the energy.

Lead author of the study Peter Köhler said: "Our literature-based estimates on the energy costs of grinding olivine to such a small size suggest that with present day technology, around 30 per cent of the CO2 taken out of the atmosphere and absorbed by the oceans would be re-emitted by the grinding process."

The researchers used a computer model to assess the impact of six different olivine dissolution scenarios. Olivine is an abundant magnesium-silicate found beneath the Earth's surface that weathers quickly when exposed to water and air – in its natural environment it is dissolved by carbonic acid which is formed from CO2 out of the atmosphere and rain water.

If olivine is distributed onto the ocean's surface, it begins to dissolve and subsequently increases the alkalinity of the water. This raises the uptake capacity of the ocean for CO2, which is taken up via gas exchange from the atmosphere.

According to the study, 92 per cent of the CO2 taken up by the oceans would be caused by changes in the chemical make-up of the water, whilst the remaining uptake would be down to changes in marine life through a process known as ocean fertilisation.

Ocean fertilisation involves providing phytoplankton with essential nutrients to encourage its growth. The increased numbers of phytoplankton use CO2 to grow, and then when it dies it sinks to the ocean floor taking the CO2 with it.

"In our study we only examined the effects of silicate in olivine. Silicate is a limiting nutrient for diatoms – a specific class of phytoplankton. We simulated with our model that the added input of silicate would shift the species composition within phytoplankton towards diatoms.

"It is likely that iron and other trace metals will also impact marine life if olivine is used on a large scale. Therefore, this approach can also be considered as an ocean fertilisation experiment and these impacts should be taken into consideration when assessing the pros and cons of olivine dissolution," continued Köhler.

The researchers also investigated whether the deposition of olivine could counteract the problem of ocean acidification, which continues to have a profound effect on marine life. They calculate that about 40 gigatonnes of olivine would need to be dissolved annually to fully counteract today's anthropogenic CO2 emissions.

"If this method of geoengineering was deployed, we would need an industry the size of the present day coal industry to obtain the necessary amounts of olivine. To distribute this, we estimate that 100 dedicated large ships with a commitment to distribute one gigatonne of olivine per year would be needed.

"Taking all our conclusions together – mainly the energy costs of the processing line and the projected potential impact on marine biology – we assess this approach as rather inefficient. It certainly is not a simple solution against the global warming problem." said Köhler.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

2. The published version of the paper 'Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology' (Peter Köhler et al 2013 Environ. Res. Lett. 8 014009) will be freely available online from 22 January.
Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.
IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.
The Institute of Physics

5. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 45,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>