Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers analyse 'rock dissolving' method of geoengineering

22.01.2013
The benefits and side effects of dissolving particles in our ocean's surfaces to increase the marine uptake of carbon dioxide (CO2), and therefore reduce the excess amount of it in the atmosphere, have been analysed in a new study published today.

The study, published today, 22 January, in IOP Publishing's journal Environmental Research Letters, assesses the impact of dissolving the naturally occurring mineral olivine and calculates how effective this approach would be in reducing atmospheric CO2.

The researchers, from the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, Germany, calculate that if three gigatonnes of olivine were deposited into the oceans each year, it could compensate for only around nine per cent of present day anthropogenic CO2 emissions.

This long discussed 'quick fix' method of geoengineering is not without environmental drawbacks; the particles would have to be ground down to very small sizes (around one micrometre) in order to be effective. The grinding process would consume energy and therefore emit varying amounts of CO2, depending on the sort of power plants used to provide the energy.

Lead author of the study Peter Köhler said: "Our literature-based estimates on the energy costs of grinding olivine to such a small size suggest that with present day technology, around 30 per cent of the CO2 taken out of the atmosphere and absorbed by the oceans would be re-emitted by the grinding process."

The researchers used a computer model to assess the impact of six different olivine dissolution scenarios. Olivine is an abundant magnesium-silicate found beneath the Earth's surface that weathers quickly when exposed to water and air – in its natural environment it is dissolved by carbonic acid which is formed from CO2 out of the atmosphere and rain water.

If olivine is distributed onto the ocean's surface, it begins to dissolve and subsequently increases the alkalinity of the water. This raises the uptake capacity of the ocean for CO2, which is taken up via gas exchange from the atmosphere.

According to the study, 92 per cent of the CO2 taken up by the oceans would be caused by changes in the chemical make-up of the water, whilst the remaining uptake would be down to changes in marine life through a process known as ocean fertilisation.

Ocean fertilisation involves providing phytoplankton with essential nutrients to encourage its growth. The increased numbers of phytoplankton use CO2 to grow, and then when it dies it sinks to the ocean floor taking the CO2 with it.

"In our study we only examined the effects of silicate in olivine. Silicate is a limiting nutrient for diatoms – a specific class of phytoplankton. We simulated with our model that the added input of silicate would shift the species composition within phytoplankton towards diatoms.

"It is likely that iron and other trace metals will also impact marine life if olivine is used on a large scale. Therefore, this approach can also be considered as an ocean fertilisation experiment and these impacts should be taken into consideration when assessing the pros and cons of olivine dissolution," continued Köhler.

The researchers also investigated whether the deposition of olivine could counteract the problem of ocean acidification, which continues to have a profound effect on marine life. They calculate that about 40 gigatonnes of olivine would need to be dissolved annually to fully counteract today's anthropogenic CO2 emissions.

"If this method of geoengineering was deployed, we would need an industry the size of the present day coal industry to obtain the necessary amounts of olivine. To distribute this, we estimate that 100 dedicated large ships with a commitment to distribute one gigatonne of olivine per year would be needed.

"Taking all our conclusions together – mainly the energy costs of the processing line and the projected potential impact on marine biology – we assess this approach as rather inefficient. It certainly is not a simple solution against the global warming problem." said Köhler.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

2. The published version of the paper 'Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology' (Peter Köhler et al 2013 Environ. Res. Lett. 8 014009) will be freely available online from 22 January.
Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.
IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.
The Institute of Physics

5. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 45,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>