Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers advance toward hybrid spintronic computer chips

14.04.2011
Researchers here have created the first electronic circuit to merge traditional inorganic semiconductors with organic “spintronics” – devices that utilize the spin of electrons to read, write and manipulate data.

Ezekiel Johnston-Halperin, assistant professor of physics, and his team combined an inorganic semiconductor with a unique plastic material that is under development in colleague Arthur J. Epstein’s lab at Ohio State University.

Last year, Epstein, Distinguished University Professor of physics and chemistry and director of the Institute for Magnetic and Electronic Polymers at Ohio State, demonstrated the first successful data storage and retrieval on a plastic spintronic device.

Ezekiel Johnston-Halperin

Now Johnston-Halperin, Epstein, and their colleagues have incorporated the plastic device into a traditional circuit based on gallium arsenide. Two of their now-former doctoral students, Lei Fang and Deniz Bozdag, had to devise a new fabrication technique to make the device.

In a paper published online today in the journal Physical Review Letters, they describe how they transmitted a spin-polarized electrical current from the plastic material, through the gallium arsenide, and into a light-emitting diode (LED) as proof that the organic and inorganic parts were working together.

“Hybrid structures promise functionality that no other materials, neither organic nor inorganic, can currently achieve alone,” Johnston-Halperin said. “We’ve opened the door to linking this exciting new material to traditional electronic devices with transistor and logic functionality. In the longer term this work promises new, chemically based functionality for spintronic devices.”

Normal electronics encode computer data based on a binary code of ones and zeros, depending on whether an electron is present or not within the material. But researchers have long known that electrons can be polarized to orient in particular directions, like a bar magnet. They refer to this orientation as spin -- either “spin up” or “spin down” -- and this approach, dubbed spintronics, has been applied to memory-based technologies for modern computing. For example, the terabyte drives now commercially available would not be possible without spintronic technology.

If scientists could expand spintronic technology beyond memory applications into logic and computing applications, major advances in information processing could follow, Johnston-Halperin explained. Spintronic logic would theoretically require much less power, and produce much less heat, than current electronics, while enabling computers to turn on instantly without “booting up.”

Hybrid and organic devices further promise computers that are lighter and more flexible, much as organic LEDs are now replacing inorganic LEDs in the production of flexible displays.

A spintronic semiconductor must be magnetic, so that the spin of electrons can be flipped for data storage and manipulation. Few typical semiconductors – that is, inorganic semiconductors – are magnetic. Of those that are, all require extreme cold, with operating temperatures below −150 degrees Fahrenheit or −100 degrees Celsius. That’s colder than the coldest outdoor temperature ever recorded in Antarctica.

“In order to build a practical spintronic device, you need a material that is both semiconducting and magnetic at room temperature. To my knowledge, Art's organic materials are the only ones that do that,” Johnston-Halperin said. The organic magnetic semiconductors were developed by Epstein and his long-standing collaborator Joel S. Miller of the University of Utah.

The biggest barrier that the researchers faced was device fabrication. Traditional inorganic devices are made at high temperatures with harsh solvents and acids that organics can’t tolerate. Fang and Bozdag solved this problem by building the inorganic part in a traditional cleanroom, and then adding an organic layer in Epstein’s customized organics lab – a complex process that required a redesign of the circuitry in both parts.

“You could ask, why didn’t we go with all organics, then?” Johnston-Halperin said. “Well, the reality is that industry already knows how to make devices out of inorganic materials. That expertise and equipment is already in place. If we can just get organic and inorganic materials to work together, then we can take advantage of that existing infrastructure to move spintronics forward right away.”

He added that much work will need to be done before manufacturers can mass-produce hybrid spintronics. But as a demonstration of fundamental science, this first hybrid circuit lays the foundation for technologies to come.

For the demonstration, the researchers used the organic magnet, which they made from a polymer called vanadium tetracyanoethylene, to polarize the spins in an electrical current. This electrical current then passed through the gallium arsenide layer, and into an LED.

To confirm that the electrons were still polarized when they reached the LED, the researchers measured the spectrum and polarization of light shining from the LED. The light was indeed polarized, indicating the initial polarization of the incoming electrons.

The fact that they were able to measure the electrons’ polarization with the LED also suggests that other researchers can use this same technique to test spin in other organic systems.

Coauthors on the paper included former doctoral student Chia-Yi Chen and former postdoctoral researcher Patrick Truitt.

This research was funded by the National Science Foundation’s Materials Research Science and Engineering Centers program, Ohio State’s Institute for Materials Research, and the Department of Energy.

Contacts: Ezekiel Johnston-Halperin, (614) 247-4074; Johnston-halperi.1@osu.edu
Arthur J. Epstein, (614) 292-1133; Epstein.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Ezekiel Johnston-Halperin | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>