Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers advance toward hybrid spintronic computer chips

14.04.2011
Researchers here have created the first electronic circuit to merge traditional inorganic semiconductors with organic “spintronics” – devices that utilize the spin of electrons to read, write and manipulate data.

Ezekiel Johnston-Halperin, assistant professor of physics, and his team combined an inorganic semiconductor with a unique plastic material that is under development in colleague Arthur J. Epstein’s lab at Ohio State University.

Last year, Epstein, Distinguished University Professor of physics and chemistry and director of the Institute for Magnetic and Electronic Polymers at Ohio State, demonstrated the first successful data storage and retrieval on a plastic spintronic device.

Ezekiel Johnston-Halperin

Now Johnston-Halperin, Epstein, and their colleagues have incorporated the plastic device into a traditional circuit based on gallium arsenide. Two of their now-former doctoral students, Lei Fang and Deniz Bozdag, had to devise a new fabrication technique to make the device.

In a paper published online today in the journal Physical Review Letters, they describe how they transmitted a spin-polarized electrical current from the plastic material, through the gallium arsenide, and into a light-emitting diode (LED) as proof that the organic and inorganic parts were working together.

“Hybrid structures promise functionality that no other materials, neither organic nor inorganic, can currently achieve alone,” Johnston-Halperin said. “We’ve opened the door to linking this exciting new material to traditional electronic devices with transistor and logic functionality. In the longer term this work promises new, chemically based functionality for spintronic devices.”

Normal electronics encode computer data based on a binary code of ones and zeros, depending on whether an electron is present or not within the material. But researchers have long known that electrons can be polarized to orient in particular directions, like a bar magnet. They refer to this orientation as spin -- either “spin up” or “spin down” -- and this approach, dubbed spintronics, has been applied to memory-based technologies for modern computing. For example, the terabyte drives now commercially available would not be possible without spintronic technology.

If scientists could expand spintronic technology beyond memory applications into logic and computing applications, major advances in information processing could follow, Johnston-Halperin explained. Spintronic logic would theoretically require much less power, and produce much less heat, than current electronics, while enabling computers to turn on instantly without “booting up.”

Hybrid and organic devices further promise computers that are lighter and more flexible, much as organic LEDs are now replacing inorganic LEDs in the production of flexible displays.

A spintronic semiconductor must be magnetic, so that the spin of electrons can be flipped for data storage and manipulation. Few typical semiconductors – that is, inorganic semiconductors – are magnetic. Of those that are, all require extreme cold, with operating temperatures below −150 degrees Fahrenheit or −100 degrees Celsius. That’s colder than the coldest outdoor temperature ever recorded in Antarctica.

“In order to build a practical spintronic device, you need a material that is both semiconducting and magnetic at room temperature. To my knowledge, Art's organic materials are the only ones that do that,” Johnston-Halperin said. The organic magnetic semiconductors were developed by Epstein and his long-standing collaborator Joel S. Miller of the University of Utah.

The biggest barrier that the researchers faced was device fabrication. Traditional inorganic devices are made at high temperatures with harsh solvents and acids that organics can’t tolerate. Fang and Bozdag solved this problem by building the inorganic part in a traditional cleanroom, and then adding an organic layer in Epstein’s customized organics lab – a complex process that required a redesign of the circuitry in both parts.

“You could ask, why didn’t we go with all organics, then?” Johnston-Halperin said. “Well, the reality is that industry already knows how to make devices out of inorganic materials. That expertise and equipment is already in place. If we can just get organic and inorganic materials to work together, then we can take advantage of that existing infrastructure to move spintronics forward right away.”

He added that much work will need to be done before manufacturers can mass-produce hybrid spintronics. But as a demonstration of fundamental science, this first hybrid circuit lays the foundation for technologies to come.

For the demonstration, the researchers used the organic magnet, which they made from a polymer called vanadium tetracyanoethylene, to polarize the spins in an electrical current. This electrical current then passed through the gallium arsenide layer, and into an LED.

To confirm that the electrons were still polarized when they reached the LED, the researchers measured the spectrum and polarization of light shining from the LED. The light was indeed polarized, indicating the initial polarization of the incoming electrons.

The fact that they were able to measure the electrons’ polarization with the LED also suggests that other researchers can use this same technique to test spin in other organic systems.

Coauthors on the paper included former doctoral student Chia-Yi Chen and former postdoctoral researcher Patrick Truitt.

This research was funded by the National Science Foundation’s Materials Research Science and Engineering Centers program, Ohio State’s Institute for Materials Research, and the Department of Energy.

Contacts: Ezekiel Johnston-Halperin, (614) 247-4074; Johnston-halperi.1@osu.edu
Arthur J. Epstein, (614) 292-1133; Epstein.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Ezekiel Johnston-Halperin | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>