Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Nabs Doubly Magic Tin Isotope, a North American First

11.12.2008
With help from newly developed equipment designed and built at Michigan State University, MSU researchers have been able to make first-of-its-kind measurements of several rare nuclei, one of which has been termed a “holy grail” of experimental nuclear physics.

The discoveries, made at MSU’s National Superconducting Cyclotron Laboratory using an isotope purification device, will help to refine theoretical models about how elements are created in the cosmos. Until now, this was beyond the technical reach of nearly all of the world's nuclear science facilities.

To be published December 12 in Physical Review Letters, the paper details how the researchers were able to measure the nuclei of tin, cadmium and indium.

"Tin-100, in particular, has been sort of a holy grail of experimental nuclear physics," said NSCL senior physicist Daniel Bazin of one of the isotopes, with 50 protons and 50 neutrons, described in the paper.

Within nuclear science, 50 is considered "magic" because it's one of a handful of numbers associated with extra stability. The other magic numbers are 2, 8, 20, 28, 82 and 126.

It takes a magic number of protons or neutrons to fill the nested energetic shells that form the nucleus like stacking Russian matryoshka dolls. To understand the concept, consider that each carved doll similarly has a magic number of marbles that precisely and completely fills the hollow interior. And just as a doll full of marbles neatly packed together is probably sturdier than one that's only half or a quarter full, so too is a closed-shell nucleus more stable than its counterparts.

Tin-100 is one of the few “doubly magic” nuclei with magic numbers of both protons and neutrons. Such nuclei are generally far more stable than other particles, especially at the fleeting, shape-shifting edge of nuclear existence. Because of this stability, doubly magic nuclei serve as useful semi-permanent signposts to rare isotope researchers who troll the unexplored terrain of the nuclear landscape seeking to answer basic questions about the structure of nuclear matter and processes that create chemical elements inside stars.

The new experimental device, the radio frequency fragment separator, provides at least a hundredfold boost to NSCL's ability to filter out the few exotic isotopes from the vast sea of other particles produced by its coupled superconducting cyclotrons and downstream magnets. Funding for the equipment was provided by the National Science Foundation.

This newfound filtering ability resulted in the first production and measurement in North America of tin-100, which has been eagerly pursued by experimentalists since at least the mid-1990s. GSI in Germany and GANIL in France are the only other nuclear science facilities in the world to have successfully produced and studied the rare, proton-rich isotope of tin, an element extensively used for thousands of years in everything from ancient spears and knives to cars and modern electronics.

In their paper, a draft version of which is available online on the arxiv.org preprint server (http://arxiv.org/abs/0810.3597), Bazin and his collaborators also report the measurement of half-lives of the cadmium-96 (48 protons and 48 neutrons) and indium-98 (49 protons and 49 neutrons) isotopes.

The announcement of the observation of the three rare isotopes builds on recent NSCL success in creating nuclear matter that otherwise only exists in extreme environments in space, such as exploding stars. In fall 2007, the laboratory reported the discovery of three neutron-rich isotopes of magnesium and aluminum in the journal Nature, a finding that received considerable media attention in the science and mainstream press.

The laboratory is currently undertaking a major MSU-funded upgrade, the centerpiece of which is a new low-energy reaccelerator that will be used to conduct astrophysical research. When this upgrade is completed in summer 2010, NSCL will be only facility in the world capable of offering experimentalists the chance to conduct research with fast, stopped and reaccelerated beams of rare isotopes.

A world leader in rare isotope research and nuclear science education, NSCL is a user facility serving 700 researchers in 32 countries.

Geoff Koch | Newswise Science News
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>