Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Largest Martian Channels Most Likely Formed by Volcanic Activity

15.08.2011
Since the Mars Viking missions of the ’70s, humans have compared the topography of the Red Planet’s surface to their home and imagined a world that once contained flowing rivers that carved channels and canyons.

But David Leverington, an associate professor in the Department of Geosciences at Texas Tech University, said what we interpret as the largest ancient riverbeds on Mars most likely were created not by water, but by massive, fast-moving, low-viscosity lava flows that ravaged the planet’s surface in a way we don’t see on Earth.

He said most Mars researchers believe these channels were created by water, and that has buoyed the belief that life on the planet may be or once was possible. But the water theory has several holes in it.

In a new study in Geomorphology, which will publish in September 2011, Leverington uses recent high-resolution photographs and mineralogical data to help lay out his theory for why lava is a much more likely culprit for creating the largest class of the outflow channels and canyons, which can stretch up to 1,800 miles.

“This paper highlights the strengths and weaknesses of the two theories that these outflow channels were formed by volcanic or water activity,” he said. “Many scientists realize there are issues with aqueous interpretations of these channels. They recognize that if these systems formed by giant subsurface flows of water, there would need to have been extraordinarily high ground permeability, up to a million or more times greater than what we’d expect for the crust of the Earth, just to allow sufficient amounts of water to make it to the outflow locations and erupt to the surface.”

While water exists on the planet, most of it appears to be trapped at the poles and at higher latitudes in the form of ice, Leverington said. Most modern theories on the creation of the largest channel systems center on the action of surface floodwaters forced up from enormous aquifers.

Martian water does exist in large quantities, Leverington said, but nowhere near the volume that we have on Earth.

“What we know about Mars’ water is that it’s primarily in the solid state and concentrated at higher latitudes,” he said. “We see large concentrations at the polar icecaps. Various measurements also have been made to infer the presence of water at high latitudes to mid latitudes where there appears to be ice frozen below the surface. An important question has recently arisen: Is there much more water on Mars than this? While there is a considerable volume of water on Mars, it may not be sufficient to have driven the kinds of channel-forming processes many believe happened.”

The Martian outflow channels superficially resemble channels on Earth that formed by floods from giant glacial lakes. However, unlike Earth’s water-formed channels, Leverington said the large Martian canyons do not feature obvious river deposits and don’t terminate in delta-like, sediment-laden mouths, such as at the end of the Mississippi River. Instead, they fade into vast plains composed of volcanic basalt.

“We see abundant evidence for past eruptions of lava at the heads of these large systems, for flows along these systems and for extraordinarily large volumes of lava at the mouths of these systems,” he said. “These characteristics are very similar to what we see at volcanic channels on the moon and on Venus. There’s really no known process for the rapid eruption of large amounts of water from aquifers to form channels that are thousands of miles long. We do have evidence of this happening through past volcanic processes on the moon and Venus.”

These kinds of channel-forming volcanic flows wouldn’t have been like anything ever seen by humans on Earth, Leverington said, though evidence suggests these types of massive lava flows could have occurred very early in our planet’s history.

Though clays and other minerals indicate there would have been water at least in the vapor form during Mars’ early history, other ancient minerals that should have been affected by the later presence of water are mostly in their natural and relatively unaltered state. Many of these pristine minerals are found in the valleys and terminal basins of the largest Martian channels.

“If we look at modern mineralogy of ancient materials exposed on the surface of Mars, we see some evidence that water was present in the vapor or liquid state very early on,” Leverington said. “We also know of many materials that should have been altered by wet conditions quite readily that haven’t been greatly altered, though they have been exposed since quite early in Mars’ history. Some ancient exposed bedrock contains large amounts of iron-rich olivine, and that has not been altered in the past 3.5 billion years. That would suggest that most of Mars history has been extraordinarily dry.

“Surface conditions were likely to have been relatively wet in large regions only in Mars’ earliest development stages. These wet stages pre-date the development of the large outflow channels on Mars.”

But that doesn’t mean that life on Mars couldn’t have developed, he said, though the severe volcanic activity that created the largest outflow channels might have hampered the planet’s ability to support complex organisms living on the surface.

“There’s still the potential for life to have developed and even flourished in the earliest and wettest stages of Mars’ history,” Leverington said. “Simple life forms, such as bacteria-like organisms, could have lingered in the subsurface under the dry conditions that ultimately became widespread. But if the large outflow channels formed through volcanic mechanisms rather than substantial water flow, that mainly restricts the environments conducive to the development of life to the earliest stages of that planet’s history.”

See Leverington at www.youtube.com/watch?v=WRQYTN7WmlI. For a link to the study, click here or contact John Davis.

CONTACT: David Leverington, assistant professor, Department of Geosciences, (806) 742-1603 or david.leverington@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

Further reports about: Earth's magnetic field Geosciences Mars Martian Winds activity volcanic

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>