Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team predicts the next big thing in the world of particle physics: supersymmetry

12.01.2012
A better understanding of the universe will be the outgrowth of the discovery of the Higgs boson, according to a team of University of Oklahoma researchers.

The team predicts the discovery will lead to supersymmetry or SUSY—an extension of the standard model of particle physics. SUSY predicts new matter states or super partners for each matter particle already accounted for in the standard model. SUSY theory provides an important new step to a better understanding of the universe we live in.

Howard Baer, Homer L. Dodge Professor of High Energy Physics in the OU Department of Physics and Astronomy, and his colleagues were the first in the world to show what SUSY matter might look like at colliding beam experiments. Baer has published books and papers on SUSY; most recently, a paper on implications of recent evidence of the Higgs boson at the Cern Large Hadron Collider for SUSY theory.

Baer has studied SUSY for 25 years and believes the discovery of the Higgs boson will open the door to a whole new world of super particles. The Higgs boson is the standard-model particle that gives all other particles mass. According to Baer, “Finding the Higgs boson is like looking for a needle in a haystack, but the Higgs boson is only the tip of the iceberg of SUSY matter.”

“With SUSY,” says Baer, “we are talking about the next level of the laws of physics. If there is SUSY, then we will find super partners, which will provide a new perspective for the origin and evolution of the universe. At that point, we can say we are on the road to a much deeper comprehension of nature.”

SUSY may be the next big step in understanding cosmology and the origin of dark matter, the so-called invisible particles that dominate the matter density of the universe. OU has several theorists and experimentalists working to validate SUSY theory. Baer has developed computer code over a 25-year period that calculates super particle masses and production rates for the LHC located at Cern in Switzerland.

The LHC is already looking for SUSY, but has had no success so far. Atlas and CMS experiments will provide new analysis on SUSY in March 2012. In the next three years, the LHC will double the energy required to prove the SUSY theory—another important step in understanding the universe as we know it today. For more information about the OU SUSY project, contact Howard Baer at baer@nhn.ou.edu.

Jana Smith | EurekAlert!
Further information:
http://www.ou.edu

Further reports about: CERN Higgs boson Higgs particle LHC Large Hadron Collider Physic

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>