Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may solve key problem in physics

15.07.2010
Binghamton University physicist Michael Lawler and his colleagues have made a breakthrough that could lead to advances in superconductors. Their findings were published this week in the British journal Nature.

The data Lawler analyzed have been available for several years, but have not been well understood until now. “The pattern looked so mysterious and interesting,” he said. “It’s so different from any other material we’ve ever looked at. Trying to understand what this data is really trying to tell us has been one of our big ambitions, and we think we have captured one of its essential ingredients.”

Lawler, a theoretical physicist, worked with physicists at Cornell University, Brookhaven National Laboratory and laboratories in Japan and Korea on this research. They found what may be the key to unlocking the secrets of the so-called “pseudogap phenomenon” in superconductors.

The “pseudogap phenomenon” is the remarkable vanishing of the low-energy electronic excitations in high-temperature superconductors. A material experiencing this rare phenomenon becomes mostly insulating but otherwise behaves like a superconductor. And because this can happen at room temperature, scientists believe it may be possible for superconductivity to exist at these temperatures.

Superconductors are materials – often but not always metals – that conduct electricity without resistance below a certain temperature. For decades, it was thought that these materials could conduct electricity only at temperatures far below freezing. In the last 20 years, however, scientists have discovered several compounds that superconduct at much higher temperatures.

In principle, a room-temperature superconductor could allow:

Electricity to travel with zero energy loss from power plants to houses.
High-speed trains to float on top of the superconductor.
Cell phone towers that could handle many cell phone carriers in high-population areas.

“It’s one of the most interesting problems that we have in physics,” Lawler said. “I believe that having a challenge at that level can help produce breakthroughs in science.”

He and his colleagues found that the electronic states of two neighboring oxygen atoms in these superconductors are different from each other. Looking at the electronic structure, then, the physicists were able to observe a broken symmetry. “It is like the electronic states were stretched along the X-direction compared to the Y-direction,” Lawler said. “That the pseudogap phase has this order allows us to make the bold claim that it is actually a distinct phase of electronic matter.”

To understand this observation better, consider the phases of rod-like objects. Rod-like polymers have many more phases than the solid, liquid and gas phases of more ordinary atoms. At high temperatures, they are in a gas phase like such atoms. However, at lower temperatures, all the rods can point in one direction while still moving around freely like a gas or liquid. Physicists call this a “nematic phase.” The organization of the rods in this phase is similar to what the researchers observed in the electronic states associated with the pseudogap phenomena.

More phases of rod-like objects exist at lower temperatures until eventually the rods freeze into a crystal. Physicists call these intermediate phases “liquid-crystal phases.” They are responsible for the liquid crystal displays commonly used in watches and televisions.

Lawler, who joined Binghamton’s faculty in 2008, earned his PhD at the University of Illinois at Urbana-Champaign and was a postdoctoral scholar at the University of Toronto. A self-described “pencil-and-paper theorist,” he is open to discovery in unexpected places. That was certainly the case with this project, as the inspiration for the data analysis came to him while he was shopping at Home Depot.

The researchers’ success, Lawler said, is owed to both the unusual data analysis—which is derived from radio technology – and the unique capabilities of his Cornell colleagues, who have a scanning tunneling microscope that enables them to look at single atoms while maintaining a large field of view.

Rachel Coker | Binghamton University
Further information:
http://www.binghamton.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>