Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies 3-D structure of key nuclear pore building block

09.06.2009
Similar architecture of an essential nuclear pore complex module and cell¡¯s vesicle coats supports common evolutionary origin

The genome of complex organisms is stashed away inside each cell's nucleus, a little like a sovereign shielded from the threatening world outside. The genome cannot govern from its protective chamber, however, without knowing what's going on in the realm beyond and having the ability to project power there.

Guarding access to the nuclear chamber is the job of large, intimidating gatekeepers known as nuclear pore complexes (NPCs), which stud the nuclear membrane, filtering all of the biochemical information passing in or out. In new research, scientists have for the first time glimpsed in three dimensions an entire subcomplex of the NPC; it's the key building block of this little understood and evolutionarily ancient structure, an innovation fundamental to the development of nearly all multicellular life on earth.

The findings, by Martin Kampmann, a graduate student in John D. Rockefeller Jr. Professor G¨¹nter Blobel's Laboratory of Cell Biology, add details to an unfolding picture of cellular evolution that shows a common architecture for the NPC and the vehicles that transport material between different parts of the cell, called coated vesicles. As early as 1980, Blobel proposed that internal membranes of cells ¨C such as those encompassing the nucleus and vesicles ¨C evolved from folds or invaginations of the outer cell membrane. Rockefeller scientists Brian Chait and Michael Rout suggested in a 2004 paper in PLoS Biology that both the NPC and vesicle coats, which contain similar protein folds, evolved from ancient membrane-coating proteins that stabilized these primordial internal membranes.

"So far, it's been unclear how these ancient folds work in the nuclear pore complex", Kampmann says. "Now we can see that the ¦Á-solenoid folds form long, flexible arms and hinges that end in the more compact, globular ¦Â-propellers. The same architectural principle is found in clathrin, a common component of vesicle coats."

In research to be published online Sunday in Nature Structural & Molecular Biology, Kampmann isolated and purified samples of the most fundamental building block of the NPC known as the Nup84 complex, which is composed of seven proteins. The entire NPC ¨C enormous by molecular standards ¨C consists of 30 different kinds of proteins. Focusing on the Nup84 complex, Kampmann used an electron microscope (EM) to take thousands of images of the complex in different states or conformations, which could reflect a role in the expansion and contraction thought to facilitate the passage of various sized molecules through the NPC. By computationally averaging these many different views, he reconstructed the first three-dimensional models of the Nup84 complex. Finally, based on prior work in the Blobel lab using X-ray crystallography to determine the exact atomic structure of individual proteins in the Nup84 complex, he plugged these proteins snugly into the EM structure.

"Because the nuclear pore complex is probably too big and flexible to determine its entire atomic structure by X-ray crystallography, I think this three-dimensional EM approach could be a big help in solving the whole thing," Kampmann says. "It allows us to put the crystal structures that we do have in context." Kampmann is applying the EM approach to other subunits in hopes of fleshing out the overall picture of one of the most mysterious machines in molecular biology. "Martin's data represent an important advance toward piecing together the structure of the NPC," Blobel says.

Given the central role of the nuclear pore complex in the most basic cell processes, defects in its assembly, structure and function can have lethal consequences. Its proteins have been associated with viral infection, primary biliary cirrhosis and cancer. An understanding of how the complex works could lead to treatments for these diseases, and also reveal the evolutionary coup that led to the gene-protecting structure found in every cell more complicated than the simplest single-celled microorganisms: the nucleus.

Brett Norman | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>