Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research identifies 3-D structure of key nuclear pore building block

Similar architecture of an essential nuclear pore complex module and cell¡¯s vesicle coats supports common evolutionary origin

The genome of complex organisms is stashed away inside each cell's nucleus, a little like a sovereign shielded from the threatening world outside. The genome cannot govern from its protective chamber, however, without knowing what's going on in the realm beyond and having the ability to project power there.

Guarding access to the nuclear chamber is the job of large, intimidating gatekeepers known as nuclear pore complexes (NPCs), which stud the nuclear membrane, filtering all of the biochemical information passing in or out. In new research, scientists have for the first time glimpsed in three dimensions an entire subcomplex of the NPC; it's the key building block of this little understood and evolutionarily ancient structure, an innovation fundamental to the development of nearly all multicellular life on earth.

The findings, by Martin Kampmann, a graduate student in John D. Rockefeller Jr. Professor G¨¹nter Blobel's Laboratory of Cell Biology, add details to an unfolding picture of cellular evolution that shows a common architecture for the NPC and the vehicles that transport material between different parts of the cell, called coated vesicles. As early as 1980, Blobel proposed that internal membranes of cells ¨C such as those encompassing the nucleus and vesicles ¨C evolved from folds or invaginations of the outer cell membrane. Rockefeller scientists Brian Chait and Michael Rout suggested in a 2004 paper in PLoS Biology that both the NPC and vesicle coats, which contain similar protein folds, evolved from ancient membrane-coating proteins that stabilized these primordial internal membranes.

"So far, it's been unclear how these ancient folds work in the nuclear pore complex", Kampmann says. "Now we can see that the ¦Á-solenoid folds form long, flexible arms and hinges that end in the more compact, globular ¦Â-propellers. The same architectural principle is found in clathrin, a common component of vesicle coats."

In research to be published online Sunday in Nature Structural & Molecular Biology, Kampmann isolated and purified samples of the most fundamental building block of the NPC known as the Nup84 complex, which is composed of seven proteins. The entire NPC ¨C enormous by molecular standards ¨C consists of 30 different kinds of proteins. Focusing on the Nup84 complex, Kampmann used an electron microscope (EM) to take thousands of images of the complex in different states or conformations, which could reflect a role in the expansion and contraction thought to facilitate the passage of various sized molecules through the NPC. By computationally averaging these many different views, he reconstructed the first three-dimensional models of the Nup84 complex. Finally, based on prior work in the Blobel lab using X-ray crystallography to determine the exact atomic structure of individual proteins in the Nup84 complex, he plugged these proteins snugly into the EM structure.

"Because the nuclear pore complex is probably too big and flexible to determine its entire atomic structure by X-ray crystallography, I think this three-dimensional EM approach could be a big help in solving the whole thing," Kampmann says. "It allows us to put the crystal structures that we do have in context." Kampmann is applying the EM approach to other subunits in hopes of fleshing out the overall picture of one of the most mysterious machines in molecular biology. "Martin's data represent an important advance toward piecing together the structure of the NPC," Blobel says.

Given the central role of the nuclear pore complex in the most basic cell processes, defects in its assembly, structure and function can have lethal consequences. Its proteins have been associated with viral infection, primary biliary cirrhosis and cancer. An understanding of how the complex works could lead to treatments for these diseases, and also reveal the evolutionary coup that led to the gene-protecting structure found in every cell more complicated than the simplest single-celled microorganisms: the nucleus.

Brett Norman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>