Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Effort Deep Underground Could Sort Out Cosmic-Scale Mysteries

28.05.2013
The Department of Energy's Oak Ridge National Laboratory has begun delivery of germanium-76 detectors to an underground laboratory in South Dakota in a team research effort that might explain the puzzling imbalance between matter and antimatter generated by the Big Bang.

“It might explain why we’re here at all,” said David Radford, who oversees specific ORNL activities in the Majorana Demonstrator research effort. “It could help explain why the matter that we are made of exists.”


The Majorana Demonstrator is being assembled and stored 4,850 feet beneath the earth's surface in enriched copper to limit the amount of background interference from cosmic rays and radioactive isotopes.

Radford, a researcher in ORNL's Physics Division and an expert in germanium detectors, has been delivering germanium-76 to Sanford Underground Research Laboratory (SURF) in Lead, S.D., for the project. After navigating a Valentine’s Day blizzard on the first two-day drive from Oak Ridge, Radford made a second delivery in March.

ORNL serves as the lead laboratory for the Majorana Demonstrator research effort, a collaboration of research institutions representing the United States, Russia, Japan and Canada. The project is managed by the University of North Carolina’s Prof. John Wilkerson, who also has a joint faculty appointment with ORNL.

Research at SURF is being conducted 4,850 feet beneath the earth’s surface with the intention of building a 40-kilogram germanium detector, capable of detecting the theorized neutrinoless double beta decay. Detection might help to explain the matter-antimatter imbalance.

Before the detection of the unobserved decay can begin, however, the germanium must first be processed, refined and enriched. Radford coordinated the multistep process, which includes an essential pit stop in Oak Ridge.

The 42.5 kilograms of 86-percent enriched white germanium oxide powder required for the project is valued at $4 million and was transported from a Russian enrichment facility to a secure underground ORNL facility in a specially designed container. The container’s special shielding and underground storage limited exposure of the germanium to cosmic rays.

Without such preventative measures, Radford says, “Cosmic rays transmute germanium atoms into long-lived radioactive atoms, at the rate of about two atoms per day per kilogram of germanium. Even those two atoms a day will add to the background in our experiment. So we use underground storage to reduce the exposure to cosmic rays by a factor of 100.”

The germanium must further undergo a reduction and purification process at two Oak Ridge companies, Electrochemical Systems, Inc. (ESI) and Advanced Measurement Technology (AMETEK), before being moved to its final destination in South Dakota. ESI works to reduce the powdered germanium oxide to metal germanium bars. ORTEC, a division of AMETEK, further purifies the bars, using the material to grow large single crystals of germanium, and turning those into one-kilogram cylindrical germanium detectors that will be used in the Demonstrator. Once they leave AMETEK, Radford and his team transport the detectors to SURF.

The enrichment process is lengthy. The Majorana Demonstrator project began the partnership with ESI four years ago. To date, ORNL has delivered -- via Radford's two trips -- nine of the enriched detectors, which are valued at about $2 million including the original cost of the enriched germanium oxide powder.

Requiring a total of 30 enriched detectors, the Majorana Demonstrator is not expected to be fully complete and operational until 2015.

Those involved in the Majorana research effort believe its completion and anticipated results will help pave the way for a next-generation detector using germanium-76 with unprecedented sensitivity. The future one-ton detector will help to determine the ratio and masses of conserved and annihilated lepton particles that are theorized to cause the initial imbalance of matter and antimatter from the Big Bang.

“The research effort is the first major step towards building a one-ton detector — a potentially Nobel-Prize-worthy project,” Radford says.

ORNL’s partner institutions in the Majorana Demonstration Project are Black Hills State University, Duke University, Institute for Theoretical and Experimental Physics (Russia), Joint Institute for Nuclear Research (Russia), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, North Carolina State University, Osaka (Japan) University, Pacific Northwest National Laboratory, South Dakota School of Mines and Technology, Triangle Universities Nuclear Laboratory, Centre for Particle Physics (Canada), University of Chicago, University of North Carolina, University of South Carolina, University of South Dakota, University of Tennessee and the Center for Experimental Nuclear Physics and Astrophysics.

The Majorana Demonstrator research project is funded by the National Science Foundation and the Department of Energy’s Office of Nuclear Physics.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Joshua Haston | Newswise
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>