Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research breakthrough will lead to more accurate weather forecasts

10.08.2009
More accurate global weather forecasts and a better understanding of climate change are in prospect thanks to a breakthrough by engineers at Queen's University Belfast's Institute of Electronics, Communications and Information Technology (ECIT).

The ECIT team has developed a high performance electronic device - known as a dual polarized Frequency Selective Surface filter - that is to be used in future European Space Agency (ESA) missions.

The filters will be installed in instruments being developed by ESA for meteorological satellites it plans to launch between 2018 and 2020. The ESA instruments are used to detect thermal emissions in the Earth's atmosphere. The data measures temperature, humidity profiles, and gas composition, which are in turn entered into operational systems and used to forecast weather and pollution.

Lead ECIT engineer Raymond Dickie said: "Measuring just 30mm in diameter and 1/100mm thick, the devices will help to provide a much more comprehensive analysis of conditions in the Earth's atmosphere than has been possible previously.

"Up to now, spaceborne remote sensing instruments have only been capable of separating either the vertically or horizontally polarized components of naturally occurring thermal emissions from gases in the Earth's atmosphere - but not both together at the same time. The invention of the new filter resolves this problem and will enable complex imaging of clouds to be undertaken for the first time at very short wavelengths."

Global patent applications have already been filed for the filters which are constructed by ECIT engineers and research staff at Queen's University's Northern Ireland Semiconductor Research Centre in Belfast. The filters have been developed as a result of a £1.2 million investment in Queen's by EPSRC, EADS Astrium and ESA to develop the technology, and have taken over 10 years to develop.

Robert Cahill, a member of the project team added: "As a result of the new filter, scientists will gain access to completely new data on a range of phenomenon including ozone depletion and the size of water particles in cirrus clouds. This in turn will enable more accurate global weather forecasts to be compiled and will provide important new insights into climate change."

The ECIT research team that developed the filters is also working on versions that operate at much higher frequencies in a project funded by the UK Centre for Earth Observation Instrumentation, the European Space Agency and EADS Astrium Ltd.

ECIT is the main supplier of this technology to the UK space industry and the European Space Agency.

ECIT designs and tests the devices using one of only two instruments in the UK capable of measuring the performance of the filters.

Further information on the work of ECIT can be found by visiting www.ecit.qub.ac.uk/

Lisa McElroy | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>