Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report provides NASA with direction for next 10 years of space research

13.04.2011
MU vice chancellor led committee that focused on fundamental physics research projects

During the past 60 years, humans have built rockets, walked on the moon and explored the outer reaches of space with probes and telescopes. During these trips in space, research has been conducted to learn more about life and space.

Recently, a group of prominent researchers from across the country published a report through the National Academy of Sciences that is intended as a guide as NASA plans the next 10 years of research in space. Rob Duncan, the University of Missouri Vice Chancellor for Research, led the team that developed a blueprint for fundamental physics research in space for the next 10 years.

"When Einstein developed his theory of relativity, no one at the time knew exactly how it could be applied. Yet that basic, scientific discovery opened many doors for us, including the development of technology that led to Global Positioning Systems (GPS)," Duncan said.

"Many trillion-dollar technologies are based on these 'basic science' discoveries, so it is vital that we continue to explore these scientific questions that, we hope, will continue to lead to technological advancement. We must continue to develop knowledge out of our curiosity alone, since that often leads to great opportunities. If we stop exploring the unknown, then we will fail to discover things that may be of great importance to our economy in ways that may be difficult to predict."

Duncan's committee, which consisted of Nicholas Bigelow from the University of Rochester, Paul Chaikin from New York University, Ronald Larson from the University of Michigan, W. Carl Lineberger from the University of Colorado, and Ronald Walsworth from Harvard University, developed two overarching "quests" and four specific "thrusts" for fundamental physics research as part of the report, "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era." The National Research Council will present the report to NASA.

The first quest is to discover and explore the physical laws governing matter, space and time. The second quest is to discover and understand how complex systems are organized. For example, ferns grow with a distinct symmetry and structure to their leaves that are similar to the overall shape of the whole plant. This is an example of "self-similarity" in nature, which could be explored in greater detail in space.

The four specific thrusts that the committee recommended NASA explore in the coming decade are:

Soft Condensed Matter Physics and Complex Fluids – While some examples exist of this new class of materials, understanding the organizing principles of these new materials, which are typically very strong but very light, could advance materials science dramatically on earth.

Precision Measurements of Fundamental Forces and Symmetries – This would help scientists determine what is not known about the composition and structure of the universe. For example, some cosmic rays have 100 billion times more energy than the highest energy particles ever produced in "atom smashers" on earth.

Quantum Gases – Understanding quantum gases can lead to a much better understanding of how particles fundamentally interact with each other. Examples of these materials include superconductors and superfluids. Superconductors are materials that conduct electricity with no resistance while superfluids are those fluids (such as helium at very low temperatures) that have no resistance to fluid flow.

Condensed Matter – As matter changes into different states, such as solid, liquid and gas, phase changes happen that are similar throughout nature. By studying these changes in space, scientists can alleviate the complication of gravity and better understand the physics effecting these changes.

"This is a fascinating time to be a scientist," Duncan said. "As NASA moves forward and develops a new space mission, we hope that this report will help guide the scientific portion of space exploration. The possibilities of discovery are endless."

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Condensed Matter NASA cosmic ray fundamental physics matter

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>