Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest Digital Survey of the Milky Way released

12.12.2007
Astronomers at the University of Hertfordshire are part of a consortium which has just released the first major instalment of a comprehensive optical digital survey of the Milky Way.

Conducted by looking at light emitted by hydrogen ions, using the Isaac Newton Telescope on La Palma, the survey contains stunning red images of nebulae and stars. The data is described in a paper submitted to the Monthly Notices of the Royal Astronomical Society.

The University of Hertfordshire hosts the Principal Investigator and further members of the IPHAS consortium. IPHAS is a survey of the Northern Galactic Plane being carried out, in Ha, r and i filters, with the Wide Field Camera (WFC) on the 2.5-metre Isaac Newton Telescope (INT).

To date, the IPHAS survey includes some 200 million unique objects in the newly released catalogue. This immense resource will foster studies that can be at once both comprehensive and subtle, of the stellar demographics of the Milky Way and of its three-dimensional structure.

Professor Janet Drew of the University of Hertfordshire said: “Using the distinctive Hydrogen marker we are able to look at some of the least understood stars in the Galaxy – those at the early and very late stages of their life cycles. These represent less than one in a thousand stars, so the IPHAS data will lead to a greatly improve our picture of stellar evolution.”

This initial data release is of observations of the Northern Plane of the Milky Way (the star filled section) that cover 1600 sq deg, in two broadband colours, and a narrow band filter sensitive to the emission of Hydrogen in the red part of the spectrum (H-alpha emission). The image resolution is high enough to permit the detection of individual stars exhibiting H-alpha emission, in addition to the diffuse gas that makes up the often-beautiful glowing nebulae that lower spatial resolution surveys have made known to us before.

The IPHAS survey will eventually be extended to cover the entire galactic plane of our galaxy, with a coverage approaching 4000 square degrees (for comparison, the moon on the sky as seen from Earth covers ~0.1 square degrees).

Helene Murphy | alfa
Further information:
http://arxiv.org/abs/0712.0384
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>