Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most powerful group of microscopes in the world

11.12.2007
Seven new super-microscopes and a specially designed building will give scientists at DTU unique opportunities to design new materials. Among the areas that will benefit are the environment, manufacturing, energy and transport.

The most powerful group of microscopes in the world was inaugurated friday by ship-owner Mr Mærsk Mc-Kinney Møller. DTU’s Center for Electron Nanoscopy (DTU CEN) owes its creation to a large donation from the A.P. Møller and Chastine Mc-Kinney Møller Foundation for General Purposes.

“It is unique to be able both to build an ambitious centre and to equip it with the absolute best in electron microscopy technology at the same time. This raises Danish experimental facilities for research into materials and nanotechnology to world class. It will have a major influence on nanoscience all over the world,” says Lars Pallesen, Rector of DTU.

One of the total of seven new microscopes is the almost four-metre-high ‘Environmental Transmission Electron Microscope’, developed in association with DTU by world-leading microscope manufacturer FEI Company. It is the most powerful of its type in the world.

“With this newly developed microscope, we will be able to see atomic-level details, in the future also in 3D. The magnification is so great that a human hair would appear as broard as a soccer field.

“We expect to be able to observe with a resolution of 0.07 nanometres – half the size of a carbon atom,” says Dr Rafal E. Dunin-Borkowski, Director of DTU CEN.

According to Dr Dunin-Borkowski, this will be a giant step forward, for example in the field of materials research, with scientists being able to see what happens to individual atoms when they make changes in materials and give them new properties.

“That applies to aluminium and magnesium alloys, building materials, and more. These are new materials able to change the course of society in areas such as communication, energy, transport and electronics,” adds Dr Dunin-Borkowski.

Special building to protect delicate apparatus
DTU’s microscopes are special because they will be the first commercial microscopes allowing 100 per cent compensation for errors in the electromagnetic lenses.

The lenses cannot be made error-free, and therefore the great challenge was error-correction. In collaboration with FEI Company, this has been successfully achieved. Measurements already show that the combination of the new microscopes and the new building has created the best microscopy facility in the world.

“As the global leader in ultra-high resolution and innovative solutions for electron microscopy, we have been working closely with our partners at DTU," says Don Kania, CEO & President of FEI Company. "Our ability to collaborate with customers, delivering the most advanced electron microscopes coupled with proven applications expertise, has demonstrated itself with great success in the realization of DTU CEN”.

The large donation from the Foundation made possible not only the creation of DTU CEN, but also the construction of a very special building to protect the microscopes from vibration, fluctuations in temperature, and electromagnetic noise.

Even the smallest vibration would blur the image when working with very high resolutions. The temperature within the building must not vary by more than a tenth of a degree, otherwise it could cause the microscope itself to expand or contract. And electromagnetic fields would interfere with the microscopes’ technology.

Michael Strangholt | alfa
Further information:
http://www.dtu.dk

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>