Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most powerful group of microscopes in the world

11.12.2007
Seven new super-microscopes and a specially designed building will give scientists at DTU unique opportunities to design new materials. Among the areas that will benefit are the environment, manufacturing, energy and transport.

The most powerful group of microscopes in the world was inaugurated friday by ship-owner Mr Mærsk Mc-Kinney Møller. DTU’s Center for Electron Nanoscopy (DTU CEN) owes its creation to a large donation from the A.P. Møller and Chastine Mc-Kinney Møller Foundation for General Purposes.

“It is unique to be able both to build an ambitious centre and to equip it with the absolute best in electron microscopy technology at the same time. This raises Danish experimental facilities for research into materials and nanotechnology to world class. It will have a major influence on nanoscience all over the world,” says Lars Pallesen, Rector of DTU.

One of the total of seven new microscopes is the almost four-metre-high ‘Environmental Transmission Electron Microscope’, developed in association with DTU by world-leading microscope manufacturer FEI Company. It is the most powerful of its type in the world.

“With this newly developed microscope, we will be able to see atomic-level details, in the future also in 3D. The magnification is so great that a human hair would appear as broard as a soccer field.

“We expect to be able to observe with a resolution of 0.07 nanometres – half the size of a carbon atom,” says Dr Rafal E. Dunin-Borkowski, Director of DTU CEN.

According to Dr Dunin-Borkowski, this will be a giant step forward, for example in the field of materials research, with scientists being able to see what happens to individual atoms when they make changes in materials and give them new properties.

“That applies to aluminium and magnesium alloys, building materials, and more. These are new materials able to change the course of society in areas such as communication, energy, transport and electronics,” adds Dr Dunin-Borkowski.

Special building to protect delicate apparatus
DTU’s microscopes are special because they will be the first commercial microscopes allowing 100 per cent compensation for errors in the electromagnetic lenses.

The lenses cannot be made error-free, and therefore the great challenge was error-correction. In collaboration with FEI Company, this has been successfully achieved. Measurements already show that the combination of the new microscopes and the new building has created the best microscopy facility in the world.

“As the global leader in ultra-high resolution and innovative solutions for electron microscopy, we have been working closely with our partners at DTU," says Don Kania, CEO & President of FEI Company. "Our ability to collaborate with customers, delivering the most advanced electron microscopes coupled with proven applications expertise, has demonstrated itself with great success in the realization of DTU CEN”.

The large donation from the Foundation made possible not only the creation of DTU CEN, but also the construction of a very special building to protect the microscopes from vibration, fluctuations in temperature, and electromagnetic noise.

Even the smallest vibration would blur the image when working with very high resolutions. The temperature within the building must not vary by more than a tenth of a degree, otherwise it could cause the microscope itself to expand or contract. And electromagnetic fields would interfere with the microscopes’ technology.

Michael Strangholt | alfa
Further information:
http://www.dtu.dk

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>