Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most powerful group of microscopes in the world

11.12.2007
Seven new super-microscopes and a specially designed building will give scientists at DTU unique opportunities to design new materials. Among the areas that will benefit are the environment, manufacturing, energy and transport.

The most powerful group of microscopes in the world was inaugurated friday by ship-owner Mr Mærsk Mc-Kinney Møller. DTU’s Center for Electron Nanoscopy (DTU CEN) owes its creation to a large donation from the A.P. Møller and Chastine Mc-Kinney Møller Foundation for General Purposes.

“It is unique to be able both to build an ambitious centre and to equip it with the absolute best in electron microscopy technology at the same time. This raises Danish experimental facilities for research into materials and nanotechnology to world class. It will have a major influence on nanoscience all over the world,” says Lars Pallesen, Rector of DTU.

One of the total of seven new microscopes is the almost four-metre-high ‘Environmental Transmission Electron Microscope’, developed in association with DTU by world-leading microscope manufacturer FEI Company. It is the most powerful of its type in the world.

“With this newly developed microscope, we will be able to see atomic-level details, in the future also in 3D. The magnification is so great that a human hair would appear as broard as a soccer field.

“We expect to be able to observe with a resolution of 0.07 nanometres – half the size of a carbon atom,” says Dr Rafal E. Dunin-Borkowski, Director of DTU CEN.

According to Dr Dunin-Borkowski, this will be a giant step forward, for example in the field of materials research, with scientists being able to see what happens to individual atoms when they make changes in materials and give them new properties.

“That applies to aluminium and magnesium alloys, building materials, and more. These are new materials able to change the course of society in areas such as communication, energy, transport and electronics,” adds Dr Dunin-Borkowski.

Special building to protect delicate apparatus
DTU’s microscopes are special because they will be the first commercial microscopes allowing 100 per cent compensation for errors in the electromagnetic lenses.

The lenses cannot be made error-free, and therefore the great challenge was error-correction. In collaboration with FEI Company, this has been successfully achieved. Measurements already show that the combination of the new microscopes and the new building has created the best microscopy facility in the world.

“As the global leader in ultra-high resolution and innovative solutions for electron microscopy, we have been working closely with our partners at DTU," says Don Kania, CEO & President of FEI Company. "Our ability to collaborate with customers, delivering the most advanced electron microscopes coupled with proven applications expertise, has demonstrated itself with great success in the realization of DTU CEN”.

The large donation from the Foundation made possible not only the creation of DTU CEN, but also the construction of a very special building to protect the microscopes from vibration, fluctuations in temperature, and electromagnetic noise.

Even the smallest vibration would blur the image when working with very high resolutions. The temperature within the building must not vary by more than a tenth of a degree, otherwise it could cause the microscope itself to expand or contract. And electromagnetic fields would interfere with the microscopes’ technology.

Michael Strangholt | alfa
Further information:
http://www.dtu.dk

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>