Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light sheds on new fibre's potential to change technology

11.12.2007
Photonic crystal fibre’s ability to create broad spectra of light, which will be the basis for important developments in technology, has been explained for the first time in an article in the leading science journal Nature-Photonics.

The fibre can change a pulse of light with a narrow range of wavelengths into a spectrum hundreds of times broader and ranging from visible light to the infra-red. This is called a supercontinuum.

This supercontinuum is one of the most exciting areas of applied physics today and the ability to create it easily will have a significant effect on technology.

This includes telecommunications, where optical systems hundreds of times more efficient than existing types will be created because signals can be transmitted and processed at many wavelengths simultaneously.

Supercontinua generated in photonic crystal fibres also help to create optical clocks which are so accurate that they lose or gain only a second every million years. Two physicists based in the US and Germany shared the Nobel Prize for Physics in 2005 for work in this area.

Despite these applications, the mechanism behind supercontinuum generation has remained unclear, which has stopped physicists from being even more precise in using it.

But researchers at the University of Bath have now discovered the reason for much of the broadening of the spectrum.

Dr Dmitry Skryabin and Dr Andrey Gorbach, of the Centre for Photonics and Photonic Materials in the Department of Physics, found that the generation of light across the entire visible spectrum was caused by an interaction between conventional pulse of lights and what are called solitons, special light waves that maintain their shape as they travel down the fibre.

The researchers found that the pulses of light sent down the fibre get struck behind the solitons as both pass down the fibre, because the solitons slow down as they move. This barrier caused by the solitons forces the light pulses to shorten their wavelength and so become bluer, just as the solitons’ wavelength lengthens, becoming redder. This dual effect creates the broadened spectrum.

“One of the most startling effects of the photonic crystal fibre is its ability to create a strong bright spectrum of visible and infra red light from a very brief pulse of light,” said Dr Skryabin.

“We have never fully understood exactly why this happens until our research showed how the pulse of light is slowed down and blocked by other activity in the fibre, forcing it to shorten its wavelength.

“Until now the creation and manipulation of the supercontinua in photonic crystal fibres have been done in an ad-hoc way without knowing exactly why different effects are observed. But now we should be able to be much more precise when using it.”

Dr Skryabin believes that the interaction between light pulses and solitons has similarities with the way gravity acts on objects.

See Related Links for more on the research carried out in the Centre for Photonics and Photonic Materials.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/2007/12/10/fibre-theory.html

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>