Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Red Sky at Night – Astronomers Delight

Largest Digital Survey of the Milky Way Released

A collaboration of over 50 astronomers, The IPHAS consortium, led from the UK, with partners in Europe, USA, Australia, has released today (10th December 2007) the first comprehensive optical digital survey of our own Milky Way.

This is an image of the centre of the Rosette Nebula, as imaged in Hydrogen alpha emission in the IPHAS survey. The centre of this HII region, where the exciting star cluster (NGC 2244) is located, lies at the middle-bottom of this image (N is to the left, and E down). The longer dimension in this image is approximately 30 arcminutes. (credits: Nick Wright, University College London) Image taken using the Isaac Newton Telescope.

Conducted by looking at light emitted by hydrogen ions, using the Isaac Newton Telescope on La Palma, the survey contains stunning red images of nebulae and stars. The data is described in a paper submitted to the Monthly Notices of the Royal Astronomical Society.

To date, the IPHAS survey includes some 200 million unique objects in the newly released catalogue. This immense resource will foster studies that can be at once both comprehensive and subtle, of the stellar demographics of the Milky Way and of its three-dimensional structure.

Professor Janet Drew of the University of Hertfordshire said “Using the distinctive Hydrogen marker we are able to look at some of the least understood stars in the Galaxy – those at the early and very late stages of their life cycles. These represent less than one in a thousand stars, so the IPHAS data will greatly improve our picture of stellar evolution.”

IPHAS is embracing a recent change in the way astronomers share data. As well as being available through traditional web access it is also being published through a Virtual Observatory interface, where it can automatically be cross-referenced with other relevant data catalogues.

Dr Nic Walton of the University of Cambridge said “Using the standard Virtual Observatory interface is a very effective way of exploiting the IPHAS survey data. This is a substantial and significant survey, which aims to eventually contain 7-800 million objects. Access through the AstroGrid Virtual Observatory opens up a full range of analysis options and should allow astronomers to make greater use of the information. IPHAS is the largest dataset published primarily through Virtual Observatory interfaces to date, and as such heralds the future of survey data mining.”

This initial data release is of observations of the Northern Plane of the Milky Way (the star filled section) that cover 1600 sq deg, in two broadband colours, and a narrow band filter sensitive to the emission of Hydrogen in the red part of the spectrum (H-alpha emission). The image resolution is high enough to permit the detection of individual stars exhibiting H-alpha emission, in addition to the diffuse gas that makes up the often-beautiful glowing nebulae that lower spatial resolution surveys have made known to us before.

The IPHAS database is already revealing a wealth of new science. For example, IPHAS team members from the University of Southampton, have led an effort to extract and catalogue the brighter H-alpha emission line stars revealed so far by the survey. This list of nearly 5000 objects is already the longest single list of its kind. The distribution of these special objects, across the northern sky, traces 'hot spots' of recently formed stars in our Galaxy much more convincingly than has been possible hitherto.

The IPHAS survey will eventually be extended to cover the entire galactic plane of our galaxy, with a coverage approaching 4000 square degrees (for comparison, the moon on the sky as seen from Earth covers ~0.1 square degrees).

Julia Maddock | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>