Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

James Webb Space Telescope Testing to Find Infrared Light for Christmas

10.12.2007
A model of the James Webb Space Telescope's Mid-InfraRed Instrument will be tested before Christmas at the Rutherford Appleton Laboratory in Oxfordshire, England to ensure the final instrument can see infrared light.

Observing the universe in the infrared light portion of the spectrum is important because many objects scientists want to observe in space are far too cold to radiate at shorter wavelengths that can be seen as visible light, but they radiate strongly in infrared light.

The Mid-InfraRed Instrument (MIRI) is one of four sophisticated instruments onboard the Webb telescope which will study the early universe and properties of materials forming around new born stars in unprecedented detail. It will also be able to image directly massive planets orbiting other stars.

Speaking at the 3rd Appleton Space Conference on Dec. 6, European Consortium Lead for MIRI, Dr. Gillian Wright from the U.K. Astronomy Technology Centre (ATC) in Edinburgh said, "It is extremely exciting, after working on the project since 1998, to begin to test a complete instrument. This will provide scientists with real data which they can use to understand the best ways of making discoveries with the instrument."

MIRI's development is an effort between NASA and the European Space Agency (ESA). NASA's Jet Propulsion Laboratory in Pasadena (JPL), Calif, leads the NASA effort and is responsible for the development of MIRI's detectors, its cryocooler, and flight software.

MIRI has already undergone alignment checks with a piece of test equipment simulating the Integrated Science Instrument Module, the part of the spacecraft where the MIRI will be attached. This test equipment was supplied by NASA's Goddard Space Flight Center, Greenbelt, Md., who is leading the development of the Webb observatory.

MIRI is the first of the Webb telescope instruments to reach this phase of cryogenic performance testing and marks a significant milestone for this international team.

"The testing is being undertaken at the STFC’s Rutherford Appleton Laboratory in Oxfordshire where all MIRI’s subsystems from collaborators in Europe and NASA’s JPL are integrated and tested in full," says Matt Greenhouse, Integrated Science Instrument Module scientist on the Webb Telescope project at NASA Goddard. This involves thermal and electromagnetic calibration and scientific and environmental testing.

Dr. Tanya Lim, who leads the international MIRI testing team explains, "Given the international nature of this project it is essential to bring together both instrument and test equipment components from around the world to ensure that they work together." She adds, "We will also be using the instrument flight software which will need to work with the spacecraft and ground software systems in order to command the instrument, simulate telemetry to the ground and generate images from the test environment."

The MIRI testing team are working around the clock until the completion of the first tests just before Christmas. Paul Eccleston, MIRI Assembly, Integration and Test Lead adds, "MIRI is the largest individual flight instrument that has been built at RAL, and has presented unusual challenges particularly with regard to cooling and thermal control. The instrument will operate at temperatures much lower than the rest of the spacecraft. As a result, the first two weeks of testing involved cooling the instrument down to its operational temperature of -267ºC, only 6.2K above absolute zero."

During spring 2008, further testing will take place using the MIRI Telescope Simulator -- a special facility being built in Spain. This simulator is unique to MIRI and will be able to simulate the stars that will be seen.

The James Webb Space Telescope is a 21st century space observatory that will peer back more than 13 billion years in time to understand the formation of galaxies, stars and planets and the evolution of our own solar system. It is expected to launch in 2013. The telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>