Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

James Webb Space Telescope Testing to Find Infrared Light for Christmas

10.12.2007
A model of the James Webb Space Telescope's Mid-InfraRed Instrument will be tested before Christmas at the Rutherford Appleton Laboratory in Oxfordshire, England to ensure the final instrument can see infrared light.

Observing the universe in the infrared light portion of the spectrum is important because many objects scientists want to observe in space are far too cold to radiate at shorter wavelengths that can be seen as visible light, but they radiate strongly in infrared light.

The Mid-InfraRed Instrument (MIRI) is one of four sophisticated instruments onboard the Webb telescope which will study the early universe and properties of materials forming around new born stars in unprecedented detail. It will also be able to image directly massive planets orbiting other stars.

Speaking at the 3rd Appleton Space Conference on Dec. 6, European Consortium Lead for MIRI, Dr. Gillian Wright from the U.K. Astronomy Technology Centre (ATC) in Edinburgh said, "It is extremely exciting, after working on the project since 1998, to begin to test a complete instrument. This will provide scientists with real data which they can use to understand the best ways of making discoveries with the instrument."

MIRI's development is an effort between NASA and the European Space Agency (ESA). NASA's Jet Propulsion Laboratory in Pasadena (JPL), Calif, leads the NASA effort and is responsible for the development of MIRI's detectors, its cryocooler, and flight software.

MIRI has already undergone alignment checks with a piece of test equipment simulating the Integrated Science Instrument Module, the part of the spacecraft where the MIRI will be attached. This test equipment was supplied by NASA's Goddard Space Flight Center, Greenbelt, Md., who is leading the development of the Webb observatory.

MIRI is the first of the Webb telescope instruments to reach this phase of cryogenic performance testing and marks a significant milestone for this international team.

"The testing is being undertaken at the STFC’s Rutherford Appleton Laboratory in Oxfordshire where all MIRI’s subsystems from collaborators in Europe and NASA’s JPL are integrated and tested in full," says Matt Greenhouse, Integrated Science Instrument Module scientist on the Webb Telescope project at NASA Goddard. This involves thermal and electromagnetic calibration and scientific and environmental testing.

Dr. Tanya Lim, who leads the international MIRI testing team explains, "Given the international nature of this project it is essential to bring together both instrument and test equipment components from around the world to ensure that they work together." She adds, "We will also be using the instrument flight software which will need to work with the spacecraft and ground software systems in order to command the instrument, simulate telemetry to the ground and generate images from the test environment."

The MIRI testing team are working around the clock until the completion of the first tests just before Christmas. Paul Eccleston, MIRI Assembly, Integration and Test Lead adds, "MIRI is the largest individual flight instrument that has been built at RAL, and has presented unusual challenges particularly with regard to cooling and thermal control. The instrument will operate at temperatures much lower than the rest of the spacecraft. As a result, the first two weeks of testing involved cooling the instrument down to its operational temperature of -267ºC, only 6.2K above absolute zero."

During spring 2008, further testing will take place using the MIRI Telescope Simulator -- a special facility being built in Spain. This simulator is unique to MIRI and will be able to simulate the stars that will be seen.

The James Webb Space Telescope is a 21st century space observatory that will peer back more than 13 billion years in time to understand the formation of galaxies, stars and planets and the evolution of our own solar system. It is expected to launch in 2013. The telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>