Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hincode: New insights on the origin of solar wind

07.12.2007
Spectacular images and data from the Hinode mission have shed new light on the Sun's magnetic field and the origins of solar wind, which can disrupt power grids, satellites and communications on Earth.
The results are published in the 7 December issue of the journal Science.
Data from Hinode, a Japanese (JAXA) mission with ESA participation, shows that magnetic waves play a critical role in driving the solar wind into space. The solar wind is a stream of electrically charged gas that is propelled away from the Sun in all directions at speeds of almost 1.5 million km/h. Better understanding of the solar wind may lead to more accurate prediction of damaging radiation waves before they reach satellites.

How the solar wind is formed and powered has been the subject of debate for decades. Powerful magnetic waves in the electrically charged gas near the Sun (called Alfvén waves) have always been a leading-candidate force in the formation of solar wind. In principle, such waves can transfer energy from the Sun's surface up through its atmosphere, or corona, into the solar wind.

In the solar atmosphere, Alfvén waves are created when convective motions and sound waves push magnetic fields around, or when dynamic processes create electrical currents that allow the magnetic fields to change shape or reconnect.

"Until now, Alfvén waves have been impossible to observe because of limited resolution of available instruments," said Alexei Pevtsov, Hinode program scientist, at NASA Headquarters, Washington, USA. "With the help of Hinode, we are now able to see direct evidence of Alfvén waves, which will help us unravel the mystery of how the solar wind is powered."

Using Hinode's high resolution X-ray telescope, a team led by Jonathan Cirtain, a solar physicist at NASA's Marshall Space Flight Center, Alabama, USA, was able to peer low into the corona at the Sun's poles and observe record numbers of X-ray jets. The jets are fountains of rapidly moving hot plasma. Previous research detected only a few jets daily.

With Hinode's higher sensitivity, Cirtain's team observed an average of 240 jets per day. They conclude that magnetic reconnection, a process where two oppositely charged magnetic fields collide and release energy, is frequently occurring in the low solar corona. This interaction forms both Alfvén waves and the burst of energized plasma in X-ray jets.

"These observations show a clear relationship between magnetic reconnection and Alfvén wave formation in the X-ray jets." said Cirtain. "The large number of jets, coupled with the high speeds of the outflowing plasma, lends further credence to the idea that X-ray jets are a driving force in the creation of the fast solar wind."

Another research team led by Bart De Pontieu, a solar physicist at Lockheed Martin's Solar and Astrophysics Laboratory, California, USA, focused on the Sun's chromosphere, the region sandwiched between the solar surface and its corona. Using extremely high-resolution images from Hinode's Solar Optical Telescope, De Pontieu's team found that the chromosphere is riddled with Alfvén waves. When the waves leak into the corona, they are strong enough to power the solar wind.

"We find that most of these Alfvén waves have periods of several minutes, much longer than many theoretical models have assumed in the past," says De Pontieu. Comparisons with advanced computer simulations from the University of Oslo, Norway, indicate that reconnection is not the only source of the Alfvén waves. "The simulations imply that many of the waves occur when the Sun's magnetic field is jostled around by convective motions and sound waves in the low atmosphere," continued De Pontieu.

Bernhard Fleck | alfa
Further information:
http://www.esa.int/esaSC/SEMGUB29R9F_index_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>