Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing time for instrument on Hubble’s successor

07.12.2007
A significant milestone for the Hubble Space Telescope successor, the James Webb Space Telescope (JWST), is on course to be reached before Christmas with the testing of the verification model of the Mid-InfraRed Instrument (MIRI) at the Rutherford Appleton Laboratory in Oxfordshire.

MIRI is one of four sophisticated instruments onboard which will study the early universe and properties of materials forming around new born stars in unprecedented detail. It will also be able to image directly massive planets orbiting other stars.

At the heart of the JWST observatory is a large cold telescope whose primary mirror measures 6.5 metres in diameter compared to 2.4 metres for Hubble, providing an enormous increase in capability to investigate the origin and evolution of galaxies, stars and planetary systems. Due for launch in 2013, JWST, which is a joint cooperative mission between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA), is optimised to operate over a wide range of infrared wavelengths.

MIRI is the first of the JWST instruments to reach this phase of cryogenic performance testing and marks a significant milestone for this international team, which is funded in the UK by the Science and Technology Facilities Council [STFC] and spread across STFC’s UK Astronomy Technology Centre (UK ATC) and Rutherford Appleton Laboratory [RAL], plus team members at Astrium Ltd, and the universities of Leicester and Cardiff .

Speaking at the 3rd Appleton Space Conference today (6th December 2007) European Consortium Lead for MIRI, Dr Gillian Wright MBE from the UK ATC in Edinburgh said, “It is extremely exciting, after working on the project since 1998, to begin to test a complete instrument. This will provide scientists with real data which they can use to understand the best ways of making discoveries with the instrument.”

The testing is being undertaken at the STFC’s Rutherford Appleton Laboratory in Oxfordshire where all MIRI’s subsystems from collaborators in Europe and NASA’s Jet Propulsion Lab are integrated and tested in full.

This involves thermal and electromagnetic calibration testing along with scientific and environmental testing.

Dr Tanya Lim, who leads the 25 people strong international MIRI testing team explains, “Given the international nature of this project it is essential to bring together both instrument and test equipment components from around the world to ensure that they work together.”

She adds, “We will also be using the instrument flight software which will need to work with the spacecraft and ground software systems in order to command the instrument, simulate telemetry to the ground and generate images from the test environment.”

The MIRI testing team are working around the clock until the completion of the first tests just before Christmas. Paul Eccleston, MIRI Assembly, Integration and Test (AIT) Lead adds, “MIRI is the largest individual flight instrument that has been built at RAL, and has presented unusual challenges particularly with regard to cooling and thermal control. The instrument will operate at temperatures much lower than the rest of the spacecraft. As a result, the first two weeks of testing involved cooling the instrument down to its operational temperature of -267ºC, only 6.2K above absolute zero.”

Images of MIRI prior to testing are available from Gill Ormrod – contact details below. Images of JWST are available on the NASA website:

http://www.jwst.nasa.gov/images.html

Contacts
Gill Ormrod – Science and Technology Facilities Council Press Office
Tel: +44 (0) 1793 442012
Email: gill.ormrod@stfc.ac.uk
Rob Gutro, Goddard Space Flight Center
Tel: 1-301-286-4044
Email: Robert.J.Gutro@nasa.gov
Franco Bonacina – ESA Press relations
Tel: +33 (0) 1 5369 7155. Email: Franco.Bonacina1@esa.int
Science contacts
Dr Gillian Wright, MBE – JWST MIRI European Consortium Principal Investigator,
UK ATC, Edinburgh
Tel: +44 (0) 131 668 8248.
Mobile: Tel: +44 791 939 8611
Email: gsw@roe.ac.uk
Paul Eccleston, Assembly, Integration and Test Lead Engineer, STFC RAL
Tel +44 (0) 1235 446366
Email: P.Eccleston@rl.ac.uk
Dr Tanya Lim – MIRI Test Team Lead and Calibration Scientist, STFC RAL
Tel +44 (0) 1235 445045
Email: T.Lim@rl.ac.uk
John Thatcher – European Consortium Project Manager, Astrium Ltd
Tel +44 (0) 1438 773 599
Email : J.Thatcher@astrium.eads.net
John Pye – University of Leicester
Tel +44 (0) 116 252 3552
Email: pye@star.le.ac.uk
Dr Peter Hargrave - University of Cardiff
Tel +44 (0) 2920876682
Email : p.hargrave@astro.cf.ac.uk

Gill Ormrod | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>