Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vega main engine test in Kourou

06.12.2007
A prototype of the P80 rocket motor, which will power the first stage of ESA's new small launcher - Vega, was successfully tested on 4 December at the Guiana Space Centre, Europe's Spaceport in Kourou, French Guiana. Ignition occurred at 12:35 local time (15:35 UTC/GMT).

The motor delivered a mean thrust of about 190 tonnes for a nominal duration of 111 seconds. This is roughly one third of the thrust delivered by each of Ariane 5's solid booster stages.

More than 600 parameters were recorded during the firing test to monitor the performance of the motor. Initial analysis confirms that the measurements are fully in line with predictions.

Solid propellant rockets cannot be shut down once they have been ignited. The test engine was equipped with specially designed cutters to break open the casing and stop the test, should a malfunction have made this necessary.

Qualification for flight

The first firing of the P80 took place on 30 November 2006. This was a qualification model and served to finalise the validation of the motor behaviour predictions and of the chosen technologies.

The motor tested yesterday was representative of the flight configuration. Once the data recorded during the test have been analysed and the engine has undergone post-test inspection, this firing is expected to complete qualification of the P80 in readiness for Vega's maiden flight, scheduled to take place by the end of 2008.

The P80 motor is about 12 metres high and 3 metres in diameter, and is loaded with 88 tonnes of solid propellant. Unlike previous motors of this size, it contains a single propellant segment, instead of several segments cast separately before being mated together.

Taking advantage of its similar dimensions, the propellant casting for the P80 is carried out at the Guiana Propellant Plant in Kourou, in the same pit as the 100-tonne lower segments of Ariane 5's solid boosters. However, instead of the steel outer structure used for the Ariane boosters, the P80 has a lightweight, filament-wound composite casing. It also incorporates a new, simplified design of igniter with a carbon fibre structure.

A new, steerable nozzle fabricated from composite material has been developed, with a simplified architecture made up of fewer elements, to reduce production costs. It also includes complex-formed cast metal parts and a new thermal insulation material. The nozzle joint is more flexible than on previous engines, allowing thrust vector control by means of electromechanical actuators. This is an additional technological improvement on a motor of this size, which usually needs to employ a more complex hydraulic system.

“The first data received show that the pressure curve is following perfectly the prediction. It is an outstanding result,” said Caroline Cros, the ESA team member responsible for P80 development “and I congratulate the industrial team, as well as our CNES and ASI partners, for this achievement.”

Today's test was performed on the solid booster test stand (Bâtiment d'Essai d'Accélérateur à Poudre - BEAP) in Kourou, the same facility used for firing tests on Ariane 5's solid-propellant motors. The P80 will now be disassembled for detailed inspection. Some of its components will be returned to Europe for examination and analysis.

“The qualification of the P80 motor is a cornerstone. It is the biggest mono-segment, filament-wound-case solid-fuel rocket motor ever developed and this takes us a step closer to the Vega maiden flight,” said Stefano Bianchi, ESA's Head of the Vega programme. “The programme has a tight schedule for the maiden flight. We can proceed - as from today - with increased confidence. Let's make sure we will meet the next major milestones as scheduled.”

About P80 and Vega

The P80 is being developed both as Vega's first stage and as a technology demonstrator. The development is part of the Vega programme, managed by an integrated project team led by ESA and involving staff from ESA, ASI - the Italian Space Agency and CNES - the French space agency. CNES also has a major responsibility in the management of the P80 development.

The industrial team is led by the French-Italian joint venture Europropulsion, under delegation from Avio SpA of Italy. Among the main industrial subcontractors involved in the P80 are SABCA of Belgium (thrust vector control system), Snecma Propulsion Solide of France (nozzle) and APP of the Netherlands (igniter).

ESA's Vega small satellite launcher is an all-solid-propellant, three-stage vehicle with a liquid-fuelled injection module, developed with the support of seven ESA Member States (Italy, France, Belgium, Switzerland, Spain, The Netherlands, and Sweden).

ELV SpA, a joint venture between Avio SpA and ASI, is the prime contractor for the Vega launcher development.

Vega is designed to lift single or multiple payloads to orbits of up to 1 500 km in altitude. Its baseline payload capability is to carry 1 500 kg to a circular, 700 km altitude, Sun-synchronous orbit. It can launch satellites ranging in mass from 300 kg to more than 2 tonnes.

This range of performance covers the needs of multiple applications in the fields of remote sensing, environmental monitoring, Earth science, space science, fundamental physics and research and technology for future space applications and systems.

Once qualified, Vega will be marketed and operated by Arianespace at the Guiana Space Centre, as a complement to Ariane 5 and Soyuz. It will serve the small to mid-sized satellite launch market.

Stefano Bianchi | alfa
Further information:
http://www.esa.int/SPECIALS/Launchers_Home/SEMXE029R9F_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>