Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Youngest solar systems detected by U-M astronomers

03.12.2007
Astronomers at the University of Michigan have found what are believed to be some of the youngest solar systems yet detected.

The systems are around the young stars UX Tau A and LkCa 15, located in the Taurus star formation region just 450 light years away. Using a telescope that measures levels of infrared radiation, the researchers noticed gaps in the protoplanetary disks of gas and dust surrounding these stars. They say those gaps are most likely caused by infant planets sweeping those areas clear of debris.

A paper on the findings by astronomy doctoral student Catherine Espaillat, professor Nuria Calvet, and their colleagues is published in the Dec. 1 issue of Astrophysical Journal Letters.

"Previously, astronomers were seeing holes at the centers of protoplanetary disks and one of the theories was that the star could be photoevaporating that material," said Espaillat, first author of the paper.

Photoevaporation refers to the process of heating up the dust and gas in the surrounding cloud until it evaporates and dissipates.

"We found that in some stars, including these two, instead of a hole, there's a gap," Espaillat said. "It's more like a lane has been cleared within the disk. That is not consistent with photoevaporation. The existence of planets is the most probable theory that can explain this structure."

The researchers used NASA's Spitzer Space Telescope for this study. The infrared orbiting telescope observes energy at wavelengths invisible to optical telescopes. That allowed astronomers to study these "pre-main sequence stars" in a deeper way.

A main sequence star is an average adult star, like the sun, which burns by converting hydrogen into helium. Pre-main sequence stars like UX Tau A and LkCa 15 haven't yet established this conversion process. They derive energy from gravitational contraction. UX Tau A and LkCa 15 are both about 1 million years old.

"They're baby stars," Calvet said. The sun, for comparison, is a middle-aged star at 4.5 billion years old. Calvet said this research adds new insights to the study of solar systems.

"We are looking for our history," Calvet said. "We are looking for the history of solar systems, trying to understand how they form."

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>