Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Basque Country University researchers publish two articles in Nature on latest discoveries on Venus

03.12.2007
Nature journal has published a series of articles devoted to the new discoveries by the European Space Agency’s (ESA) Venus Express space probe made on our neighbouring planet. Two researchers from the University of the Basque Country (UPV/EHU), Agustín Sánchez Lavega and Ricardo Hueso of the Planetary Sciences Team at the Higher School of Engineering in Bilbao, are the co-authors of the two articles.

The Venus Express space mission was launched in November 2005 and entered in planetary orbit in April 2006. Since then it has been regularly sending data and images from Venus. Thanks to this space mission, researchers are beginning to reveal some of the secrets of this mysterious planet, so similar in size to the Earth while, at the same time, being an inhospitable world with its high temperatures caused by a runaway greenhouse effect and the poisonous composition of its atmosphere and clouds.

Researchers Agustín Sánchez Lavega and Ricardo Hueso took part in the observations and analyses carried out by VIRTIS, a spectrum camera that takes pictures simultaneously in visible and infrared light and obtains high-resolution spectra. Nature magazine has published seven research articles, two of which have been co-written by the abovementioned researchers. The aim of the investigation is the detailed study of the planet’s atmosphere, its meteorology, its strange, sulphuric acid cloud formations and the evolution of its climate.

In one of the articles Sánchez-Lavega and Hueso present a detailed study of the chemical processes and the movements which affect two gases that are of great interest for our planet Earth (carbon dioxide and oxygen) and which are present at a distance from the planet surface – at a height of between 95 and 115 km. The upper atmosphere of Venus is very tenuous and its behaviour helps to understand the energy mechanisms occurring between outer space and the deepest and densest atmosphere of the planet. The intense ultraviolet light from the Sun decomposes carbon dioxide molecules into carbon monoxide and oxygen and which then move to the nocturnal side of the planet. Here they recombine to form molecules of oxygen and emit infrared light. The researchers have presented in detail the movements of the masses of excited oxygen which move from the diurnal side (illuminated by the Sun) to the nocturnal side, with speeds of up to 250 km/h, as well as the mechanisms operating in the intense infrared emission of the oxygen.

In the other article the discovery of the South Pole double vortex (the dipole) is presented. This is a whirlwind in rapid rotation around the planet’s Pole (it’s takes 2.5 days) and which extends throughout the cloud layers at an altitude of between 50 and 65 kms. The study of this meteorological structure is of great interest in order to understand the mechanisms involved in the formation of similar vortexes, especially that of the Earth’s Antarctic continent, where this is one of the agents responsible for the appearance of the ozone layer gap. We have discovered that the polar vortex on Venus is a double one, in the shape of an eight and which, at times, forms at a height of 65 km where it is detected at high temperatures. At the deepest cloud layers the whirlwind is unique and its clouds are very opaque (at an altitude of 45-50 km).

With these kinds of comparative studies between the atmospheres of Venus and the Earth, researchers hope to obtain a better understanding of the greenhouse effect, the formation and chemistry of the sulphuric acid clouds, the nature of the vortexes (whirlwinds) in the polar atmospheres of the planets as well as the meteorology of the planets that rotate slowly. The research will enable obtaining knowledge of climate change on our planet. In short, the aim is to understand why a planet which has such a similar mass, size and chemical composition to those of the Earth can have such a different climate evolution.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?hizk=I&Berri_Kod=1543

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>