Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jules Verne ATV given its 'wings'

03.12.2007
The next time Jules Verne ATV’s four solar arrays are fully deployed, giving the vehicle a total span of 22.3 m, will be in early 2008, at 28 000 km/h over the South Pacific Ocean. Just 100 minutes after lift-off, following separation from the Ariane 5 launcher, the x-shaped solar arrays will give the European vessel its characteristic dragonfly appearance.

The automatic deployment of these metallic blue 'wings' and the activation of the on-board navigation systems will transform the 20-tonne Automated Transfer Vehicle (ATV) into a fully automatic spaceship navigating towards the International Space Station (ISS).

To make sure that this crucial and irreversible phase of deployment occurs smoothly in orbit, engineers have worked solidly for two weeks in November in the giant integration 'white room' at Europe's Spaceport near Kourou, French Guiana, to install and test the four huge solar arrays. This final and successful step has taken place after several years of efforts and challenges.

"The test went well despite the fragility of the solar arrays. It proves that the ATV solar power, designed for up to six months in orbit, is working fine", said Detlef Otto, who is in charge of the ATV power system for ESA and who supervised the test.

The bus-sized ATV spacecraft had to be rotated into a horizontal position for the integration of the solar panels. The panels were fully deployed and then folded again and latched, ready to fly. Each panel was minutely inspected before final integration.

Since the solar arrays have been engineered to work in weightlessness, their 9.15 m-long structure is so light that they cannot be unfolded on Earth without being supported by several cables. “Otherwise, in Earth's gravity, the solar panels could not hold their own weight of 7kg without bending irreversibly”, said Detlef Otto. The system is so sensitive that during the arrays' deployment tests even the barely noticeable air conditioning flow had to be turned off in the huge integration hall.

But the five-year effort to develop the ATV 'wings' and their rotation mechanisms, that enable the outstretched solar panels to constantly track the Sun as the ATV circles the Earth, have been a challenge until recently. During several years of testing, the state of the art solar panels have been deployed and checked about 50 times by the engineers at Dutch Space, who built them.

Some tricky issues related to the solar panel rotation mechanisms, built by Thales Alenia Space in Cannes, France, have put some pressure on the timeline. Constant tracking with these mechanisms permits the most efficient generation of electrical power for the ATV in orbit and during its six-month long ISS docking phase.

The four 4-kg rotation mechanisms have been checked and removed from the ATV several times to solve some minor problems of resistance and lately, some contamination issues due to metal particles found in one of the mechanisms.

Once deployed, the four solar arrays provide electrical power to ATV and to its rechargeable batteries so that the eclipse periods in orbit can be bridged. Silicon-based solar cells, developed and produced in Germany by RWE Space Solar Power, cover the four panels per array with a total surface of 33.6m² (4 x 8.4m²), and are able to produce an average of 4800 Watts.

Mounted on the ATV service module, the four sun-tracking arrays are totally independent and can get the best orientation to the Sun thanks to the rotating mechanisms. The ATV solar power sources are built to tolerate the loss of one of the four independent arrays and their respective power chains.

“Now we feel confident, although the next challenge will be the 6-month attached phase with the Station because he ATV wings will have to withstand millions of vibrations and oscillations due to the ISS crew activity and the Station jets”, said Detlef Otto.

Markus Bauer | alfa
Further information:
http://www.esa.int/esaHS/SEM6EM73R8F_index_0.html

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>