Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New x-ray technique targets terrorists and tumours

Scientists at The University of Manchester have developed a new x-ray technique that could be used to detect hidden explosives, drugs and human cancers more effectively.

Professor Robert Cernik and colleagues from The School of Materials have built a prototype colour 3D X-ray system that allows material at each point of an image to be clearly identified.

The innovative work is reported in the latest issue of The Journal of the Royal Society Interface and is published online.

The technique developed by the Manchester scientists is known as tomographic energy dispersive diffraction imaging or TEDDI.

It harnesses all the wavelengths present in an x-ray beam to create probing 3D pictures.

The technique improves on existing methods by allowing detailed images to be created with one very simple scanning motion.

The method makes use of advanced detector and collimator engineering pioneered at Daresbury Laboratory, Rutherford Appleton Laboratory and The University of Cambridge.

Scientists believe this advanced engineering will reduce the time taken to create a sample scan from hours to just a few minutes.

This shorter period would eliminate the problem of radiation damage, allowing biopsy samples to be studied and normal tissue types to be distinguished from abnormal.

Professor Cernik said: “We have demonstrated a new prototype X-ray imaging system that has exciting possibilities across a wide range of disciplines including medicine, security scanning and aerospace engineering.

“Current imaging systems such as spiral CAT scanners do not use all the information contained in the X-ray beam. We use all the wavelengths present to give a colour X-ray image. This extra information can be used to fingerprint the material present at each point in a 3D image.

“The TEDDI method is highly applicable to biomaterials, with the possibility of specific tissue identification in humans or identifying explosives, cocaine or heroin in freight. It could also be used in aerospace engineering, to establish whether the alloys in a weld have too much strain.”

To develop the technology Prof Cernik and his team have had to overcome two major technological challenges.

The first was to produce pixellated spectroscopy grade energy sensitive detectors. This was carried out in collaboration with Rutherford Appleton Laboratory, Oxford and Daresbury Laboratory, Cheshire.

The second challenge was to build a device known as a 2D collimator, which filters and directs streams of scattered X-rays. The collimator device needed to have a high aspect ratio of 6000:1, meaning that it its width to its length is more than that of the channel tunnel.

This device was built using a laser drilling method in collaboration with The University of Cambridge.

Professor Cernik added: “There is a great deal of interest within engineering communities in the non-destructive determination of residual stresses in manufactured components, especially in critical areas such as aircraft wings and engine casings.

“The TEDDI system can be used for strain scanning whole fabricated components in the automotive or aerospace industries, although we are currently limited to light alloys.”

Using detectors made from silicon, the Manchester team has been restricted to looking at thin samples or light atom structures.

But they are developing new, high purity, high atomic weight, semiconductor detector materials that will remove this difficulty and drastically speed up scanning times.

A University of Manchester-led project called HEXITEC ( ), which is funded by the Engineering and Physical Sciences Research Council (EPSRC), has just started to make new material.

Jon Keighren | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>