Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New x-ray technique targets terrorists and tumours

03.12.2007
Scientists at The University of Manchester have developed a new x-ray technique that could be used to detect hidden explosives, drugs and human cancers more effectively.

Professor Robert Cernik and colleagues from The School of Materials have built a prototype colour 3D X-ray system that allows material at each point of an image to be clearly identified.

The innovative work is reported in the latest issue of The Journal of the Royal Society Interface and is published online.

The technique developed by the Manchester scientists is known as tomographic energy dispersive diffraction imaging or TEDDI.

It harnesses all the wavelengths present in an x-ray beam to create probing 3D pictures.

The technique improves on existing methods by allowing detailed images to be created with one very simple scanning motion.

The method makes use of advanced detector and collimator engineering pioneered at Daresbury Laboratory, Rutherford Appleton Laboratory and The University of Cambridge.

Scientists believe this advanced engineering will reduce the time taken to create a sample scan from hours to just a few minutes.

This shorter period would eliminate the problem of radiation damage, allowing biopsy samples to be studied and normal tissue types to be distinguished from abnormal.

Professor Cernik said: “We have demonstrated a new prototype X-ray imaging system that has exciting possibilities across a wide range of disciplines including medicine, security scanning and aerospace engineering.

“Current imaging systems such as spiral CAT scanners do not use all the information contained in the X-ray beam. We use all the wavelengths present to give a colour X-ray image. This extra information can be used to fingerprint the material present at each point in a 3D image.

“The TEDDI method is highly applicable to biomaterials, with the possibility of specific tissue identification in humans or identifying explosives, cocaine or heroin in freight. It could also be used in aerospace engineering, to establish whether the alloys in a weld have too much strain.”

To develop the technology Prof Cernik and his team have had to overcome two major technological challenges.

The first was to produce pixellated spectroscopy grade energy sensitive detectors. This was carried out in collaboration with Rutherford Appleton Laboratory, Oxford and Daresbury Laboratory, Cheshire.

The second challenge was to build a device known as a 2D collimator, which filters and directs streams of scattered X-rays. The collimator device needed to have a high aspect ratio of 6000:1, meaning that it its width to its length is more than that of the channel tunnel.

This device was built using a laser drilling method in collaboration with The University of Cambridge.

Professor Cernik added: “There is a great deal of interest within engineering communities in the non-destructive determination of residual stresses in manufactured components, especially in critical areas such as aircraft wings and engine casings.

“The TEDDI system can be used for strain scanning whole fabricated components in the automotive or aerospace industries, although we are currently limited to light alloys.”

Using detectors made from silicon, the Manchester team has been restricted to looking at thin samples or light atom structures.

But they are developing new, high purity, high atomic weight, semiconductor detector materials that will remove this difficulty and drastically speed up scanning times.

A University of Manchester-led project called HEXITEC (http://www.hexitec.co.uk ), which is funded by the Engineering and Physical Sciences Research Council (EPSRC), has just started to make new material.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps
http://www.pubs.royalsoc.ac.uk/index.cfm?page=1058
http://www.hexitec.co.uk

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>