Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New population of faint protogalaxies discovered

30.11.2007
Astronomers have found a new population of faint protogalaxies by taking the most sensitive spectroscopic survey ever of a time when the universe was only 15% of its present age. These objects are the probable building blocks of galaxies today, including our own Milky Way. The discovery substantiates a popular theory of galaxy formation. The research, conducted by Michael Rauch and George Becker of the Carnegie Observatories with colleagues, will be published in the March 1, 2008, issue of the Astrophysical Journal.

“The farther we look back into space the farther we see back in time,” explained Rauch.” We were actually trying to measure a faint signal from intergalactic gas caused by the cosmic ultraviolet background radiation. But as often happens in science, we got a surprise and found something we weren't looking for—dozens of faint, discrete objects emitting radiation from neutral hydrogen in the so-called Lyman alpha line, a fundamental signature of protogalaxies.”

The team used the European Southern Observatory's Very Large Telescope, for an unprecedented 92 hours, to expose a spectrum of the universe when it was only 2 billion years old. Most astronomers believe that when the universe was young it was filled with a thin, almost uniform gas. A popular theory of galaxy formation predicts that the gas accreted forming smaller protogalaxies, which then collided and merged to become the massive galaxies seen today. The new discovery lends strong support to this theory.

During the 1990s there was mounting evidence in favor of this hierarchical picture of galactic evolution, including measurements of distant quasars by Rauch and collaborators that showed how the properties of cosmic gas clouds—the reservoir of matter for galaxy formation—fit within that scheme.

“Most of those gas clouds are dark and visible only as foreground objects, which cast something of a shadow against a bright background quasar,” Becker said. “Intriguingly, one class of these shadows—known as damped Lyman alpha systems—was suspected to arise when those small, protogalactic building blocks intersect the line-of-sight to the quasar. For many years, these shadows were our only hint that a population of numerous early galaxies existed.”

Until now this possibility could not be tested because these protogalaxies, with their low masses and tiny stellar populations, were too faint for observations. The weak light signal that the team has now detected from these objects implies low star formation rates and a still small amount of chemical enrichment, as expected for young galaxies. The objects are about 20 times more common than all the distant galaxies ever seen from ground-based surveys, a finding consistent with the properties of the puzzling damped Lyman alpha shadows and with the abundance of early low-mass protogalaxies in the hierarchical picture.

Michael Rauch | EurekAlert!
Further information:
http://www.ociw.edu
http://www.ciw.edu/

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>