Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation predicts Voyager 2 will reach major milestone in space in late 2007–early 2008

30.11.2007
According to UC Riverside physicist's model, spacecraft will cross 'termination shock' one more time, in mid-2008

Using a computer model simulation, Haruichi Washimi, a physicist at UC Riverside, has predicted when the interplanetary spacecraft Voyager 2 will cross the “termination shock,” the spherical shell around the solar system that marks where the solar wind slows down to subsonic speed.

According to Washimi’s simulations, the spacecraft is set to cross the termination shock in late 2007-early 2008. To make this forecast, Washimi and his colleagues used data from Voyager 2 and performed a global “magneto-hydrodynamic simulation” – a method that allows for precise and quantitative predictions of geomagnetic disturbances caused by solar activities.

Because Voyager 2’s crossing of the shock is expected to be an abrupt and relatively brief event, scientists are working to ensure that the most is made of the opportunity. With an idea of when the spacecraft will cross the shock, they are better able to maximize coverage of the crossing.

Study results appear in the Dec. 1 issue of The Astrophysical Journal.

“Washimi’s model has predicted the location of a boundary that is approximately 90 times farther from the sun than is the Earth, to within a few percent,” said Gary Zank, the director of the Institute of Geophysics and Planetary Physics and one of the coauthors of the research paper. “This is truly remarkable given the enormous complexity of the physics involved, the temporal and spatial scales involved, and the variability of the solar wind conditions.”

The solar wind – a stream of charged particles ejected by the sun in all directions – travels at supersonic speeds when it leaves the sun, until it eventually encounters the interstellar medium made up of plasma, neutral gas and dust.

At the termination shock, located at 7-8.5 billion miles from the sun, the solar wind is decelerated to less than the speed of sound. The boundary of the termination shock is not fixed, however, but wobbly, fluctuating in both time and distance from the sun, depending on solar activity.

“This is the first time the termination-shock position has been forecast in this way,” said Washimi, the lead author of the research paper and a scientist at the Institute of Geophysics and Planetary Physics. “After it crosses this boundary, Voyager 2 will be in the outer heliosphere beyond which lies the interstellar medium and galactic space. Our simulations also show that the spacecraft will cross the termination shock again in the middle of 2008. This will happen because of the back and forth movement of the termination-shock boundary. This means Voyager 2 will experience multiple crossings of the termination shock. These crossings will come to an end after the spacecraft escapes into galactic space.”

Voyager 2 was launched Aug. 20, 1977. It visited four planets and their moons in the course of its journey into space. Its sister spacecraft Voyager 1, which was launched Sept. 5, 1977, crossed the termination shock in December 2004 – earlier than Voyager 2 because of a shorter trajectory. Both spacecraft are currently operational, but power sources have degraded and some of the instrumentation no longer works optimally. In the future, the spacecraft will encounter their next milestone in space: the heliopause, which is the boundary where the interstellar medium brings the solar wind to a halt.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>