Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation predicts Voyager 2 will reach major milestone in space in late 2007–early 2008

30.11.2007
According to UC Riverside physicist's model, spacecraft will cross 'termination shock' one more time, in mid-2008

Using a computer model simulation, Haruichi Washimi, a physicist at UC Riverside, has predicted when the interplanetary spacecraft Voyager 2 will cross the “termination shock,” the spherical shell around the solar system that marks where the solar wind slows down to subsonic speed.

According to Washimi’s simulations, the spacecraft is set to cross the termination shock in late 2007-early 2008. To make this forecast, Washimi and his colleagues used data from Voyager 2 and performed a global “magneto-hydrodynamic simulation” – a method that allows for precise and quantitative predictions of geomagnetic disturbances caused by solar activities.

Because Voyager 2’s crossing of the shock is expected to be an abrupt and relatively brief event, scientists are working to ensure that the most is made of the opportunity. With an idea of when the spacecraft will cross the shock, they are better able to maximize coverage of the crossing.

Study results appear in the Dec. 1 issue of The Astrophysical Journal.

“Washimi’s model has predicted the location of a boundary that is approximately 90 times farther from the sun than is the Earth, to within a few percent,” said Gary Zank, the director of the Institute of Geophysics and Planetary Physics and one of the coauthors of the research paper. “This is truly remarkable given the enormous complexity of the physics involved, the temporal and spatial scales involved, and the variability of the solar wind conditions.”

The solar wind – a stream of charged particles ejected by the sun in all directions – travels at supersonic speeds when it leaves the sun, until it eventually encounters the interstellar medium made up of plasma, neutral gas and dust.

At the termination shock, located at 7-8.5 billion miles from the sun, the solar wind is decelerated to less than the speed of sound. The boundary of the termination shock is not fixed, however, but wobbly, fluctuating in both time and distance from the sun, depending on solar activity.

“This is the first time the termination-shock position has been forecast in this way,” said Washimi, the lead author of the research paper and a scientist at the Institute of Geophysics and Planetary Physics. “After it crosses this boundary, Voyager 2 will be in the outer heliosphere beyond which lies the interstellar medium and galactic space. Our simulations also show that the spacecraft will cross the termination shock again in the middle of 2008. This will happen because of the back and forth movement of the termination-shock boundary. This means Voyager 2 will experience multiple crossings of the termination shock. These crossings will come to an end after the spacecraft escapes into galactic space.”

Voyager 2 was launched Aug. 20, 1977. It visited four planets and their moons in the course of its journey into space. Its sister spacecraft Voyager 1, which was launched Sept. 5, 1977, crossed the termination shock in December 2004 – earlier than Voyager 2 because of a shorter trajectory. Both spacecraft are currently operational, but power sources have degraded and some of the instrumentation no longer works optimally. In the future, the spacecraft will encounter their next milestone in space: the heliopause, which is the boundary where the interstellar medium brings the solar wind to a halt.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>