Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum computer breakthrough and dark matter stars

30.11.2007
Highlights in this issue: A quantum computer breakthrough and dark matter stars.

Quantum Computer Breakthrough

Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan Physical Review Letters (forthcoming) and B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James , A. Gilchrist, and A. G. White

Physical Review Letters (forthcoming)

Two research groups have independently managed to experimentally solve a mathematical problem with light-based quantum computers. The simultaneous achievements appear to be the first experimental demonstrations of true (though rudimentary) quantum mechanical computations. Both groups manipulated quantum mechanically entangled photons to calculate the prime factors of the number 15.

Although the physicists could have gotten the answer to the problem much more easily by querying an average elementary school child, the method both groups used involved a quantum mechanical approach commonly known as Shor's algorithm. Previous theoretical work has shown that the algorithm could potentially crack cryptographic codes that are practically unbreakable with non-quantum mechanical (classical) computers.

While there's no great need to factor numbers as small as 15, the research demonstrates that quantum computation is feasible with existing technology and could in principle be scaled up to tackle problems that would take longer than the age of the universe to solve with any classical computer, but would require only minutes on a quantum computer.

In addition to factoring large numbers and solving other challenging mathematical problems, quantum computers based on the work of these two groups could help model quantum mechanical problems in physics and chemistry (see http://xxx.lanl.gov/ftp/arxiv/papers/0710/0710.0278.pdf for an example of a quantum simulator experiment by C.-Y. Lu et al.), and lead to ultra high speed searching algorithms.

Chao-Yang Lu and his group are currently expanding on their work by trying to manipulate larger numbers of quantum bits. In the long run, they plan to add quantum memory to their quantum computers, which could further increase the number of photons they can control. In addition, because the loss of photons is a huge problem for light-based quantum computation, they are working on some basic quantum codes that can protect the quantum information from photon loss error. These sorts of issues are crucial in the effort to scale up photonic quantum computation. - JR

Dark Matter Stars

Douglas Spolyar, Katherine Freese, and Paolo Gondolo Physical Review Letters (forthcoming)

Before stars were fueled by nuclear fusion, they may have been fueled by dark matter. Researchers have theorized that "Dark Stars" may have been supported by the huge release of energy from dark matter annihilation (i.e. the release of energy that comes when matter and antimatter encounter each other) in the early universe. The physicists from UC Santa Cruz, UM Ann Arbor, and the University of Utah believe that despite many theories stating otherwise, dark matter did have an effect on the first stars in the universe.

The release of energy from dark matter/anti-dark matter annihilation may have prevented the first proto-stars from collapsing and beginning fusion, but in turn could have heated a star¿s core enough to support it. This would change the time scale of the formation of second generation stars, the appearance of elements like nitrogen, carbon, and oxygen in our universe, and other aspects of stellar evolution.

Products of the annihilation, such as neutrinos, gamma-rays, or antimatter may make these dark stars or their remnants detectable. Although stars composed of dark matter are likely to be much dimmer than normal stars, they may produce some light. The next step for researchers will be to determine how much visible light the dark stars give off, and how long they survive. Dark stars may have died out millions of years ago, or they may still exist today.

The idea of dark stars relies on the Lightest Super symmetric Particle (LSP), a highly favored candidate for particles that make up dark matter. The properties of the LSPs are consistent with current information about dark matter in the universe. Many physicists are hopeful that new experiments in particle colliders will soon yield more discoveries on the nature of dark matter, and perhaps offer insight into the possibility of dark stars in the early universe. - CC

Contact: James Riordon
American Physical Society
riordon@aps.org
301-209-3238

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>