Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum computer breakthrough and dark matter stars

30.11.2007
Highlights in this issue: A quantum computer breakthrough and dark matter stars.

Quantum Computer Breakthrough

Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan Physical Review Letters (forthcoming) and B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James , A. Gilchrist, and A. G. White

Physical Review Letters (forthcoming)

Two research groups have independently managed to experimentally solve a mathematical problem with light-based quantum computers. The simultaneous achievements appear to be the first experimental demonstrations of true (though rudimentary) quantum mechanical computations. Both groups manipulated quantum mechanically entangled photons to calculate the prime factors of the number 15.

Although the physicists could have gotten the answer to the problem much more easily by querying an average elementary school child, the method both groups used involved a quantum mechanical approach commonly known as Shor's algorithm. Previous theoretical work has shown that the algorithm could potentially crack cryptographic codes that are practically unbreakable with non-quantum mechanical (classical) computers.

While there's no great need to factor numbers as small as 15, the research demonstrates that quantum computation is feasible with existing technology and could in principle be scaled up to tackle problems that would take longer than the age of the universe to solve with any classical computer, but would require only minutes on a quantum computer.

In addition to factoring large numbers and solving other challenging mathematical problems, quantum computers based on the work of these two groups could help model quantum mechanical problems in physics and chemistry (see http://xxx.lanl.gov/ftp/arxiv/papers/0710/0710.0278.pdf for an example of a quantum simulator experiment by C.-Y. Lu et al.), and lead to ultra high speed searching algorithms.

Chao-Yang Lu and his group are currently expanding on their work by trying to manipulate larger numbers of quantum bits. In the long run, they plan to add quantum memory to their quantum computers, which could further increase the number of photons they can control. In addition, because the loss of photons is a huge problem for light-based quantum computation, they are working on some basic quantum codes that can protect the quantum information from photon loss error. These sorts of issues are crucial in the effort to scale up photonic quantum computation. - JR

Dark Matter Stars

Douglas Spolyar, Katherine Freese, and Paolo Gondolo Physical Review Letters (forthcoming)

Before stars were fueled by nuclear fusion, they may have been fueled by dark matter. Researchers have theorized that "Dark Stars" may have been supported by the huge release of energy from dark matter annihilation (i.e. the release of energy that comes when matter and antimatter encounter each other) in the early universe. The physicists from UC Santa Cruz, UM Ann Arbor, and the University of Utah believe that despite many theories stating otherwise, dark matter did have an effect on the first stars in the universe.

The release of energy from dark matter/anti-dark matter annihilation may have prevented the first proto-stars from collapsing and beginning fusion, but in turn could have heated a star¿s core enough to support it. This would change the time scale of the formation of second generation stars, the appearance of elements like nitrogen, carbon, and oxygen in our universe, and other aspects of stellar evolution.

Products of the annihilation, such as neutrinos, gamma-rays, or antimatter may make these dark stars or their remnants detectable. Although stars composed of dark matter are likely to be much dimmer than normal stars, they may produce some light. The next step for researchers will be to determine how much visible light the dark stars give off, and how long they survive. Dark stars may have died out millions of years ago, or they may still exist today.

The idea of dark stars relies on the Lightest Super symmetric Particle (LSP), a highly favored candidate for particles that make up dark matter. The properties of the LSPs are consistent with current information about dark matter in the universe. Many physicists are hopeful that new experiments in particle colliders will soon yield more discoveries on the nature of dark matter, and perhaps offer insight into the possibility of dark stars in the early universe. - CC

Contact: James Riordon
American Physical Society
riordon@aps.org
301-209-3238

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>