Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST announces first observation of 'persistent flow' in a gas

29.11.2007
Using laser light to stir an ultracold gas of atoms, researchers at the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (NIST/University of Maryland) have demonstrated the first “persistent” current in an ultracold atomic gas —a frictionless flow of particles.

This relatively long-lived flow, a hallmark of a special property known as “superfluidity,” might help bring to the surface some deep physics insights, and enable super-sensitive rotation sensors that could someday make navigation more precise. The researchers report this feat in an upcoming Physical Review Letters.*

To carry out the demonstration, the researchers first created a Bose-Einstein condensate (BEC), a gas of atoms cooled to such low temperatures that it transforms into matter with unusual properties. One of these properties is superfluidity, the fluid version of superconductivity (whereby electrical currents can flow essentially forever in a loop of wire). Although BECs in principle could support everlasting flows of gas, traditional setups for creating and observing BECs have not provided the most stable environments for the generally unstable superfluid flows, which have tended to break up after short periods of time.

To address this issue, the NIST researchers use laser light and magnetic fields on a gas of sodium atoms to create a donut-shaped BEC—one with a hole in the center—as opposed to the usual ball- or cigar-shaped BEC. This configuration ends up stabilizing circular superfluid flows because it would take too much energy for the hole—containing no atoms—to disturb matters by moving into the donut—which contains lots of atoms.

To stir the superfluid, the researchers zap the gas with laser light that has a property known as orbital angular momentum. (See “‘Tornadoes’ Are Transferred From Light to Sodium Atoms.”) Acting like a boat paddle sweeping water in a circle, the orbital angular momentum creates a fluid flow around the donut. After the stirring, the researchers have observed the gas flowing around the donut for up to 10 seconds. Even more striking, this persistent flow exists even when only 20 percent of the gas atoms were in the special BEC state.

This experiment may provide ways to study the fundamental connection between BECs and superfluids. More practically, the technique may lead to ultraprecise navigation gyroscopes. A BEC superfluid is very sensitive to rotation; its flow would change in fixed steps in response to small changes in rotation. Sound too impractical for airplane navigation" Research groups around the world already have taken the first step by demonstrating BECs on a chip.

Ben Stein | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>