Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from the UAB and ICMAB achieve unprecedented control of formation of nanostructures

08.05.2002


Atomic Force Microscope image of nanoislands


A team of researchers from the Universitat Autònoma de Barcelona, together with researchers from ICMAB (CSIC) and other Russian and Ukrainian scientists, have discovered an unprecedented method for accurately controlling the formation of nanometric structures made of semiconducting material in the form of islets, using promising optoelectronic applications in the most advanced communication technology. The discovery was featured as a cover story by the prestigious Nanotechnology magazine.

One of the areas that is currently being most thoroughly researched with respect to future applications is the manipulation of surfaces on a nanometric scale, up to the point of practically constructing and manipulating structures atom by atom, and whereby the quantum effects could give these materials new properties, with revolutionary applications for nanoelectronics, optoelectronics and computing. One of these structures is the so-called quantum dot, in which electrons lose their capacity for mobility in spatial dimensions and become confined to a zero dimension (a dot). At the moment, the experiments with semiconductor materials most similar to quantum dots are the formation of nanoilles, semiconductor islets of several tens of nanometers of diameter and height. These islets can be produced using lithographic techniques, “printing” them onto the surface of a substrate, but for a decade now, scientists have been working on a new, and more efficient and stable, method for constructing them: the spontaneous formation of nanoilles.

Now, a team of researchers from the Universitat Autònoma de Barcelona, together with researchers from the Institute of the Science of Materials in Barcelona (a CSIC institute on the UAB campus), the Institute of Microstructure Physics in Nizhny Novgorod (Russia) and the Institute of Semiconductor Physics in Kiev (Ukraine), have developed unprecedented accuracy in the control of the growth of nanoilles. These researchers have made a detailed study of the spontaneous formation of SiGe nanoilles (semiconductor material) by depositing thin layers of geranium atoms onto silicon substrates, and have observed, for the first time, how they separately affect the thickness of the layers of geranium and the temperature of formation of nanoilles in their distribution, composition and in two possible forms: pyramid or rounded.



The team of researchers has developed an unprecedented level of control of the distribution, shape and composition of the SiGe nanoilles, such that by varying the thickness of the layers of geranium and the temperature of the silicon substrate they can obtain, at will, large densities of small pyramid islets, large round islets distributed at much lower densities or even a uniform mixture of pyramid and rounded islets. As for the control of the composition of the islets’ SiGe semiconductor material, the researchers have observed that as temperature is increased, so does the silicon content, independently of the form and distribution of the nanoilles.

This research was later considered worthy of being the cover story in the prestigious Nanotechnology magazine, and may have important implications for the fields of nanoelectronics and optoelectronics, as semiconductor lasers (such as those used in ‘laser pointers’) manufactured with this material could emit light in a far wider range of colours than at present. It is expected that this discovery will improve the transmission of information via fibre optics and in electronic circuits, the basis of new communication technologies.

The researchers are now working on the formation of other quantum nanostructures, most particularly semiconductor nanolagoons, which are formed spontaneously on depositing layers of cadmium selenium (CdSe) onto zinc selenium (ZnSe) substrates.

Octavi López Coronado | alphagalileo

More articles from Physics and Astronomy:

nachricht Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
30.05.2017 | ICFO-The Institute of Photonic Sciences

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>