Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from the UAB and ICMAB achieve unprecedented control of formation of nanostructures

08.05.2002


Atomic Force Microscope image of nanoislands


A team of researchers from the Universitat Autònoma de Barcelona, together with researchers from ICMAB (CSIC) and other Russian and Ukrainian scientists, have discovered an unprecedented method for accurately controlling the formation of nanometric structures made of semiconducting material in the form of islets, using promising optoelectronic applications in the most advanced communication technology. The discovery was featured as a cover story by the prestigious Nanotechnology magazine.

One of the areas that is currently being most thoroughly researched with respect to future applications is the manipulation of surfaces on a nanometric scale, up to the point of practically constructing and manipulating structures atom by atom, and whereby the quantum effects could give these materials new properties, with revolutionary applications for nanoelectronics, optoelectronics and computing. One of these structures is the so-called quantum dot, in which electrons lose their capacity for mobility in spatial dimensions and become confined to a zero dimension (a dot). At the moment, the experiments with semiconductor materials most similar to quantum dots are the formation of nanoilles, semiconductor islets of several tens of nanometers of diameter and height. These islets can be produced using lithographic techniques, “printing” them onto the surface of a substrate, but for a decade now, scientists have been working on a new, and more efficient and stable, method for constructing them: the spontaneous formation of nanoilles.

Now, a team of researchers from the Universitat Autònoma de Barcelona, together with researchers from the Institute of the Science of Materials in Barcelona (a CSIC institute on the UAB campus), the Institute of Microstructure Physics in Nizhny Novgorod (Russia) and the Institute of Semiconductor Physics in Kiev (Ukraine), have developed unprecedented accuracy in the control of the growth of nanoilles. These researchers have made a detailed study of the spontaneous formation of SiGe nanoilles (semiconductor material) by depositing thin layers of geranium atoms onto silicon substrates, and have observed, for the first time, how they separately affect the thickness of the layers of geranium and the temperature of formation of nanoilles in their distribution, composition and in two possible forms: pyramid or rounded.



The team of researchers has developed an unprecedented level of control of the distribution, shape and composition of the SiGe nanoilles, such that by varying the thickness of the layers of geranium and the temperature of the silicon substrate they can obtain, at will, large densities of small pyramid islets, large round islets distributed at much lower densities or even a uniform mixture of pyramid and rounded islets. As for the control of the composition of the islets’ SiGe semiconductor material, the researchers have observed that as temperature is increased, so does the silicon content, independently of the form and distribution of the nanoilles.

This research was later considered worthy of being the cover story in the prestigious Nanotechnology magazine, and may have important implications for the fields of nanoelectronics and optoelectronics, as semiconductor lasers (such as those used in ‘laser pointers’) manufactured with this material could emit light in a far wider range of colours than at present. It is expected that this discovery will improve the transmission of information via fibre optics and in electronic circuits, the basis of new communication technologies.

The researchers are now working on the formation of other quantum nanostructures, most particularly semiconductor nanolagoons, which are formed spontaneously on depositing layers of cadmium selenium (CdSe) onto zinc selenium (ZnSe) substrates.

Octavi López Coronado | alphagalileo

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>