Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme machine simulates space conditions

07.05.2002


Conditions in space are unlike anything we experience on Earth. Incredible extremes of temperature that can switch in an instant, startling vacuum conditions, not to mention radiation - it`s a tough life for a spacecraft. So it is essential to make sure they are prepared to withstand these conditions before they are launched into this wholly unfriendly environment.



For instance, in a vacuum, heat cannot be conducted as it is here on Earth. A spacecraft that is being heated by the Sun`s rays may, at the same time, be experiencing temperatures far below freezing on the side of its body facing away from the Sun. Similarly, when the spacecraft shifts and moves out of the sunlight altogether, the rapid drop in temperature experienced by the spacecraft would be more dramatic than putting an ice cube into a furnace. These sudden changes in temperature mean that the spacecraft has to be extremely flexible, as well as resilient, in order to cope with the inevitable expansions and contractions it will undergo as it moves in and out of the Sun`s rays.
In order to find out what it is really like out there, most of the European Space Agency`s science spacecraft are carefully loaded into an enormous simulator that is capable of creating the nearest thing to space conditions here on Earth. Looking like a giant tin can 10 metres in diameter, the Large Space Simulator, the largest of its kind in Europe, is used to inflict these extremes on the spacecraft it is testing, in order to check, recheck, and then check again, that it is up to the job.

Preparing the simulator is an extremely delicate task and has to be carried out with the utmost care. "If there is a scratch smaller than a hair`s breadth at a joint in the pipes feeding the simulator, the liquid nitrogen we use to cool the unit would leak out and the vacuum would be lost," says Philippe Sivac, a spacecraft engineer at ESA`s test centre in the Netherlands. "So there is always a moment of suspense when we first switch on."



Liquid nitrogen is perfectly suited to producing the exceptionally cold temperature required to simulate the conditions spacecraft will encounter. It is commonly used in medicine where rapid and extreme cooling is needed to preserve small and delicate items, such as living organs. But in order to simulate the freezing cold conditions of deep space, vast quantities are required. It is delivered twice a day at the test centre in an enormous tanker throughout the testing period. "We need to use 3000 litres an hour to get the temperature down to minus 190ºC, so we get deliveries of 30 000 litres at a time," says Philippe.

At the other extreme, huge and powerful lamps simulate the intensity of the Sun`s rays on the spacecraft using a light beam that is six metres in diameter. This accurately reproduces the spectrum of solar light, generating a light intensity of up to 2000 watts per square metre - similar to turning on 600 household light bulbs in a small bedroom, and temperatures quickly reach more than 130ºC.

When a spacecraft orbiting the Earth moves into an eclipse, where the Earth shields it from the Sun, its temperature will drop dramatically. In the simulator this sudden change is reproduced by turning off the lamps. The testing process has to make sure that every instrument on board the spacecraft stays within the temperature guidelines at which it can still operate, no matter what it is like outside.

Such painstaking testing procedures are necessary milestones in a spacecraft`s journey towards launch into space. Currently, the space simulator is subjecting the INTEGRAL spacecraft to the ordeal that is space - the environment it will be visiting in October 2002 when it enters its orbit around the Earth. There, it will be gathering some of the most energetic radiation that exists: gamma rays from black holes and other sources, such as supernova explosions. At least the scientists know that the spacecraft has a fighting chance against the worst conditions that space can throw at it.

Monica Talevi | alphagalileo

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>