Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme machine simulates space conditions

07.05.2002


Conditions in space are unlike anything we experience on Earth. Incredible extremes of temperature that can switch in an instant, startling vacuum conditions, not to mention radiation - it`s a tough life for a spacecraft. So it is essential to make sure they are prepared to withstand these conditions before they are launched into this wholly unfriendly environment.



For instance, in a vacuum, heat cannot be conducted as it is here on Earth. A spacecraft that is being heated by the Sun`s rays may, at the same time, be experiencing temperatures far below freezing on the side of its body facing away from the Sun. Similarly, when the spacecraft shifts and moves out of the sunlight altogether, the rapid drop in temperature experienced by the spacecraft would be more dramatic than putting an ice cube into a furnace. These sudden changes in temperature mean that the spacecraft has to be extremely flexible, as well as resilient, in order to cope with the inevitable expansions and contractions it will undergo as it moves in and out of the Sun`s rays.
In order to find out what it is really like out there, most of the European Space Agency`s science spacecraft are carefully loaded into an enormous simulator that is capable of creating the nearest thing to space conditions here on Earth. Looking like a giant tin can 10 metres in diameter, the Large Space Simulator, the largest of its kind in Europe, is used to inflict these extremes on the spacecraft it is testing, in order to check, recheck, and then check again, that it is up to the job.

Preparing the simulator is an extremely delicate task and has to be carried out with the utmost care. "If there is a scratch smaller than a hair`s breadth at a joint in the pipes feeding the simulator, the liquid nitrogen we use to cool the unit would leak out and the vacuum would be lost," says Philippe Sivac, a spacecraft engineer at ESA`s test centre in the Netherlands. "So there is always a moment of suspense when we first switch on."



Liquid nitrogen is perfectly suited to producing the exceptionally cold temperature required to simulate the conditions spacecraft will encounter. It is commonly used in medicine where rapid and extreme cooling is needed to preserve small and delicate items, such as living organs. But in order to simulate the freezing cold conditions of deep space, vast quantities are required. It is delivered twice a day at the test centre in an enormous tanker throughout the testing period. "We need to use 3000 litres an hour to get the temperature down to minus 190ºC, so we get deliveries of 30 000 litres at a time," says Philippe.

At the other extreme, huge and powerful lamps simulate the intensity of the Sun`s rays on the spacecraft using a light beam that is six metres in diameter. This accurately reproduces the spectrum of solar light, generating a light intensity of up to 2000 watts per square metre - similar to turning on 600 household light bulbs in a small bedroom, and temperatures quickly reach more than 130ºC.

When a spacecraft orbiting the Earth moves into an eclipse, where the Earth shields it from the Sun, its temperature will drop dramatically. In the simulator this sudden change is reproduced by turning off the lamps. The testing process has to make sure that every instrument on board the spacecraft stays within the temperature guidelines at which it can still operate, no matter what it is like outside.

Such painstaking testing procedures are necessary milestones in a spacecraft`s journey towards launch into space. Currently, the space simulator is subjecting the INTEGRAL spacecraft to the ordeal that is space - the environment it will be visiting in October 2002 when it enters its orbit around the Earth. There, it will be gathering some of the most energetic radiation that exists: gamma rays from black holes and other sources, such as supernova explosions. At least the scientists know that the spacecraft has a fighting chance against the worst conditions that space can throw at it.

Monica Talevi | alphagalileo

More articles from Physics and Astronomy:

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

nachricht Next-generation optics offer the widest real-time views of vast regions of the sun
11.01.2017 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>