Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Pierre Auger Observatory takes a big step forward in solving the mystery of the highest-energy cosmic rays

The Pierre Auger Observatory has taken a big step forward in solving the mystery of the nature and origin of the highest-energy cosmic rays. Since 45 years ago we know the Earth is occasionally struck by atomic nuclei which individually packed an enormous amount of energy comparable to a fast served tennis ball.

Scientists of the Pierre Auger Observatory have demonstrated that these particles do not arrive uniformly distributed across the sky. Instead their arrival directions turn out to be correlated with a set of Active Galactic Nuclei (AGNs), that is, supermassive black holes which are devouring large amounts of matter from their host galaxies spewing out as high energy radiation.

The result of the Auger Observatory suggests that these AGNs are also related with these ultra-high energy cosmic rays detected on Earth.These findings have recently been published in Science the last 9th of November (vol. 318).

Up to now Astronomy has been based in the detection of photons (light, radio waves, X and gamma rays,..) emitted by cosmic objects, since only neutral particles arrive to us without deflecting in the cosmic magnetic fields. However, atomic nuclei do have electric charge and therefore they suffer large deviations before arriving to Earth. As a consequence no relationship between cosmic rays and their sources had been found, apart of that of low energy cosmic rays from the Sun.

Theoretical predictions state that cosmic rays with energy over about 60 EeV (1 EeV = 1018 electron-volts) are stopped by the microwave radiation, remnant of the Big Bang. Nevertheless cosmic rays coming from nearby sources can keep their energy. The results of the Auger Observatory confirm these predictions since cosmic rays detected with energies over that value are correlated with AGNs located a few hundred light years from us, relatively close from a cosmological point of view.

The discovery of the Pierre Auger Observatory opens a new window to the nearby universe: the cosmic ray astronomy. In addition these particles have energies a million times larger that those presently achieved in large accelerators on Earth providing a fundamental tool for the study of the physical processes of very high energy.

Unfortunately these cosmic rays arrive to Earth very infrequently (around one per square kilometre and century) and therefore huge detectors are necessary. A cosmic ray of high energy entering the atmosphere generates a shower of particles which reach the ground. The Pierre Auger Observatory is provided with two types of detectors to register these particles: a surface detector consisting of 1600 particle counters spread on a 3000 km2 surface and a set of telescopes which detect the fluorescence light produced by the shower particles in the atmosphere. The combined information gathered by both detectors provides unprecedented accuracy on the arrival direction, energy and nature of the cosmic ray.

The Pierre Auger Observatory is an international consortium of 17 countries in which no one contributes more than 20% of the total cost (around USD$ 54 millions). The Observatory is named for the French physicist who for the first time detected a high energy cosmic ray at ground using a new technique which is the base of our present detectors.

The Observatory is located in Argentina near Malargüe in the province of Mendoza. It is leaded by prestigious scientists like J. Cronin from the University of Chicago (Nobel Prize in Physics) and Alan Watson from the University of Leeds. The present Observatory of the South Hemisphere will be complemented by a Northern Observatory in the Colorado State (USA).

It is worth noting that this discovery has been carried out even before completion of the South Observatory in Argentina. In the next years a much larger amount of data will be available covering the whole sky. We believe that the present finding will be followed by others which finally will lead us to solve the mystery of the physical processes which accelerates particles to such huge energies.

Spain is a member of the Pierre Auger collaboration since 2002 when the group of the Universidad de Santiago joined the collaboration. Presently, four Spanish Institutions are full members with a representative in the Collaboration Board of the Observatory: Universidad Complutense de Madrid, Universidad de Alcalá, Universidad de Granada and Universidad de Santiago de Compostela.

Source: Prof. Fernando Arqueros (UCM).

Área de Cultura Científica | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>