Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pierre Auger Observatory takes a big step forward in solving the mystery of the highest-energy cosmic rays

27.11.2007
The Pierre Auger Observatory has taken a big step forward in solving the mystery of the nature and origin of the highest-energy cosmic rays. Since 45 years ago we know the Earth is occasionally struck by atomic nuclei which individually packed an enormous amount of energy comparable to a fast served tennis ball.

Scientists of the Pierre Auger Observatory have demonstrated that these particles do not arrive uniformly distributed across the sky. Instead their arrival directions turn out to be correlated with a set of Active Galactic Nuclei (AGNs), that is, supermassive black holes which are devouring large amounts of matter from their host galaxies spewing out as high energy radiation.

The result of the Auger Observatory suggests that these AGNs are also related with these ultra-high energy cosmic rays detected on Earth.These findings have recently been published in Science the last 9th of November (vol. 318).

Up to now Astronomy has been based in the detection of photons (light, radio waves, X and gamma rays,..) emitted by cosmic objects, since only neutral particles arrive to us without deflecting in the cosmic magnetic fields. However, atomic nuclei do have electric charge and therefore they suffer large deviations before arriving to Earth. As a consequence no relationship between cosmic rays and their sources had been found, apart of that of low energy cosmic rays from the Sun.

Theoretical predictions state that cosmic rays with energy over about 60 EeV (1 EeV = 1018 electron-volts) are stopped by the microwave radiation, remnant of the Big Bang. Nevertheless cosmic rays coming from nearby sources can keep their energy. The results of the Auger Observatory confirm these predictions since cosmic rays detected with energies over that value are correlated with AGNs located a few hundred light years from us, relatively close from a cosmological point of view.

The discovery of the Pierre Auger Observatory opens a new window to the nearby universe: the cosmic ray astronomy. In addition these particles have energies a million times larger that those presently achieved in large accelerators on Earth providing a fundamental tool for the study of the physical processes of very high energy.

Unfortunately these cosmic rays arrive to Earth very infrequently (around one per square kilometre and century) and therefore huge detectors are necessary. A cosmic ray of high energy entering the atmosphere generates a shower of particles which reach the ground. The Pierre Auger Observatory is provided with two types of detectors to register these particles: a surface detector consisting of 1600 particle counters spread on a 3000 km2 surface and a set of telescopes which detect the fluorescence light produced by the shower particles in the atmosphere. The combined information gathered by both detectors provides unprecedented accuracy on the arrival direction, energy and nature of the cosmic ray.

The Pierre Auger Observatory is an international consortium of 17 countries in which no one contributes more than 20% of the total cost (around USD$ 54 millions). The Observatory is named for the French physicist who for the first time detected a high energy cosmic ray at ground using a new technique which is the base of our present detectors.

The Observatory is located in Argentina near Malargüe in the province of Mendoza. It is leaded by prestigious scientists like J. Cronin from the University of Chicago (Nobel Prize in Physics) and Alan Watson from the University of Leeds. The present Observatory of the South Hemisphere will be complemented by a Northern Observatory in the Colorado State (USA).

It is worth noting that this discovery has been carried out even before completion of the South Observatory in Argentina. In the next years a much larger amount of data will be available covering the whole sky. We believe that the present finding will be followed by others which finally will lead us to solve the mystery of the physical processes which accelerates particles to such huge energies.

Spain is a member of the Pierre Auger collaboration since 2002 when the group of the Universidad de Santiago joined the collaboration. Presently, four Spanish Institutions are full members with a representative in the Collaboration Board of the Observatory: Universidad Complutense de Madrid, Universidad de Alcalá, Universidad de Granada and Universidad de Santiago de Compostela.

Source: Prof. Fernando Arqueros (UCM).

Área de Cultura Científica | alfa
Further information:
http://www.sciencemag.org/cgi/content/abstract/318/5852/938

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>