Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pierre Auger Observatory takes a big step forward in solving the mystery of the highest-energy cosmic rays

27.11.2007
The Pierre Auger Observatory has taken a big step forward in solving the mystery of the nature and origin of the highest-energy cosmic rays. Since 45 years ago we know the Earth is occasionally struck by atomic nuclei which individually packed an enormous amount of energy comparable to a fast served tennis ball.

Scientists of the Pierre Auger Observatory have demonstrated that these particles do not arrive uniformly distributed across the sky. Instead their arrival directions turn out to be correlated with a set of Active Galactic Nuclei (AGNs), that is, supermassive black holes which are devouring large amounts of matter from their host galaxies spewing out as high energy radiation.

The result of the Auger Observatory suggests that these AGNs are also related with these ultra-high energy cosmic rays detected on Earth.These findings have recently been published in Science the last 9th of November (vol. 318).

Up to now Astronomy has been based in the detection of photons (light, radio waves, X and gamma rays,..) emitted by cosmic objects, since only neutral particles arrive to us without deflecting in the cosmic magnetic fields. However, atomic nuclei do have electric charge and therefore they suffer large deviations before arriving to Earth. As a consequence no relationship between cosmic rays and their sources had been found, apart of that of low energy cosmic rays from the Sun.

Theoretical predictions state that cosmic rays with energy over about 60 EeV (1 EeV = 1018 electron-volts) are stopped by the microwave radiation, remnant of the Big Bang. Nevertheless cosmic rays coming from nearby sources can keep their energy. The results of the Auger Observatory confirm these predictions since cosmic rays detected with energies over that value are correlated with AGNs located a few hundred light years from us, relatively close from a cosmological point of view.

The discovery of the Pierre Auger Observatory opens a new window to the nearby universe: the cosmic ray astronomy. In addition these particles have energies a million times larger that those presently achieved in large accelerators on Earth providing a fundamental tool for the study of the physical processes of very high energy.

Unfortunately these cosmic rays arrive to Earth very infrequently (around one per square kilometre and century) and therefore huge detectors are necessary. A cosmic ray of high energy entering the atmosphere generates a shower of particles which reach the ground. The Pierre Auger Observatory is provided with two types of detectors to register these particles: a surface detector consisting of 1600 particle counters spread on a 3000 km2 surface and a set of telescopes which detect the fluorescence light produced by the shower particles in the atmosphere. The combined information gathered by both detectors provides unprecedented accuracy on the arrival direction, energy and nature of the cosmic ray.

The Pierre Auger Observatory is an international consortium of 17 countries in which no one contributes more than 20% of the total cost (around USD$ 54 millions). The Observatory is named for the French physicist who for the first time detected a high energy cosmic ray at ground using a new technique which is the base of our present detectors.

The Observatory is located in Argentina near Malargüe in the province of Mendoza. It is leaded by prestigious scientists like J. Cronin from the University of Chicago (Nobel Prize in Physics) and Alan Watson from the University of Leeds. The present Observatory of the South Hemisphere will be complemented by a Northern Observatory in the Colorado State (USA).

It is worth noting that this discovery has been carried out even before completion of the South Observatory in Argentina. In the next years a much larger amount of data will be available covering the whole sky. We believe that the present finding will be followed by others which finally will lead us to solve the mystery of the physical processes which accelerates particles to such huge energies.

Spain is a member of the Pierre Auger collaboration since 2002 when the group of the Universidad de Santiago joined the collaboration. Presently, four Spanish Institutions are full members with a representative in the Collaboration Board of the Observatory: Universidad Complutense de Madrid, Universidad de Alcalá, Universidad de Granada and Universidad de Santiago de Compostela.

Source: Prof. Fernando Arqueros (UCM).

Área de Cultura Científica | alfa
Further information:
http://www.sciencemag.org/cgi/content/abstract/318/5852/938

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>