Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pierre Auger Observatory takes a big step forward in solving the mystery of the highest-energy cosmic rays

27.11.2007
The Pierre Auger Observatory has taken a big step forward in solving the mystery of the nature and origin of the highest-energy cosmic rays. Since 45 years ago we know the Earth is occasionally struck by atomic nuclei which individually packed an enormous amount of energy comparable to a fast served tennis ball.

Scientists of the Pierre Auger Observatory have demonstrated that these particles do not arrive uniformly distributed across the sky. Instead their arrival directions turn out to be correlated with a set of Active Galactic Nuclei (AGNs), that is, supermassive black holes which are devouring large amounts of matter from their host galaxies spewing out as high energy radiation.

The result of the Auger Observatory suggests that these AGNs are also related with these ultra-high energy cosmic rays detected on Earth.These findings have recently been published in Science the last 9th of November (vol. 318).

Up to now Astronomy has been based in the detection of photons (light, radio waves, X and gamma rays,..) emitted by cosmic objects, since only neutral particles arrive to us without deflecting in the cosmic magnetic fields. However, atomic nuclei do have electric charge and therefore they suffer large deviations before arriving to Earth. As a consequence no relationship between cosmic rays and their sources had been found, apart of that of low energy cosmic rays from the Sun.

Theoretical predictions state that cosmic rays with energy over about 60 EeV (1 EeV = 1018 electron-volts) are stopped by the microwave radiation, remnant of the Big Bang. Nevertheless cosmic rays coming from nearby sources can keep their energy. The results of the Auger Observatory confirm these predictions since cosmic rays detected with energies over that value are correlated with AGNs located a few hundred light years from us, relatively close from a cosmological point of view.

The discovery of the Pierre Auger Observatory opens a new window to the nearby universe: the cosmic ray astronomy. In addition these particles have energies a million times larger that those presently achieved in large accelerators on Earth providing a fundamental tool for the study of the physical processes of very high energy.

Unfortunately these cosmic rays arrive to Earth very infrequently (around one per square kilometre and century) and therefore huge detectors are necessary. A cosmic ray of high energy entering the atmosphere generates a shower of particles which reach the ground. The Pierre Auger Observatory is provided with two types of detectors to register these particles: a surface detector consisting of 1600 particle counters spread on a 3000 km2 surface and a set of telescopes which detect the fluorescence light produced by the shower particles in the atmosphere. The combined information gathered by both detectors provides unprecedented accuracy on the arrival direction, energy and nature of the cosmic ray.

The Pierre Auger Observatory is an international consortium of 17 countries in which no one contributes more than 20% of the total cost (around USD$ 54 millions). The Observatory is named for the French physicist who for the first time detected a high energy cosmic ray at ground using a new technique which is the base of our present detectors.

The Observatory is located in Argentina near Malargüe in the province of Mendoza. It is leaded by prestigious scientists like J. Cronin from the University of Chicago (Nobel Prize in Physics) and Alan Watson from the University of Leeds. The present Observatory of the South Hemisphere will be complemented by a Northern Observatory in the Colorado State (USA).

It is worth noting that this discovery has been carried out even before completion of the South Observatory in Argentina. In the next years a much larger amount of data will be available covering the whole sky. We believe that the present finding will be followed by others which finally will lead us to solve the mystery of the physical processes which accelerates particles to such huge energies.

Spain is a member of the Pierre Auger collaboration since 2002 when the group of the Universidad de Santiago joined the collaboration. Presently, four Spanish Institutions are full members with a representative in the Collaboration Board of the Observatory: Universidad Complutense de Madrid, Universidad de Alcalá, Universidad de Granada and Universidad de Santiago de Compostela.

Source: Prof. Fernando Arqueros (UCM).

Área de Cultura Científica | alfa
Further information:
http://www.sciencemag.org/cgi/content/abstract/318/5852/938

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>